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Abstract

This paper revisits the coordinated tracking of networked systems in the presence of input satura-
tion. For discrete-time networked systems with high-order integrator typed dynamics and input
saturation, nonlinear feedback laws are constructed and then sufficient conditions are established
to guarantee the global consensus tracking of the systems. Finally, numerical simulations are
given to support the theoretical results.
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laws

1. Introduction

Cooperative control of networked systems in which multiple agents work together to accom-
plish a task is a hot topic in these decades and absorbs more and more attention as time goes by
[1, 2, 3, 4, 5, 6, 7]. The distributed interaction manner among agents induces some merits, such
as high computational efficiency and low enery comsumption, and considerable works about this
topic turn out, including consensus [1, 4, 7], synchronization [8, 9], controllability [10, 11] and so
on. The investigation in the literature mentioned above and some references therein were carried
out under the premise that there was no any limitation on the movement of the agents. In other
words, all agents moved absolutely free during the process towards the destination. However, it
is impossible for agents moving absolutely free in practical engineering, due to the constrain of
the physical devices or the sensing radius limitation or some other restrictions.

One of the common constraints is the input saturation, which means the control input is
asked to locate in a bounded region [12]. Nowadays, there are lots of efforts are devoted to
the investigation of the coordination of networked systems subject to the input saturation. In
[13, 14, 15, 16, 19, 17, 20], semi-global coordinated control of general linear multi-agent sys-
tems with input saturation had been solved on the basis of the low-gain feedback, in which each
agent is asymptotically null controllable with bounded control (ANCBC). Notice that, “semi-
global” means that the initial states of all agents should be chosen from a (arbitrarily large)
bounded region, and the role of the low-gain feedback technique is to tune the control input to be
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small enough to avoid the saturation. Note that references [17, 18, 19] took the disturbance into
consideration. In detail, [17] and [18] paid attention to the continuous-time systems with input
saturation and input additive disturbance, while [19] focused on the discrete-time multi-agent
systems with external disturbance. By adding the low-gain feedback laws to the high-gain feed-
back ones, which named the low-and-high feedback approach, robust semi-global coordinated
control of systems with input saturation and input additive disturbance as well as dead zone had
been analyzed ([17, 18]). Naturally, we want to get rid of the restriction on the initial states of
the agents. And the concept of “global” coordinated control of multi-agent systems turned out.
References [21, 22, 23] paid attention to the global coordination of multiple agents systems with
input saturation and discrete-time dynamics. The investigation were carried out for systems with
either neutrally stable linear dynamics or the double integrator typed dynamics, by doing trans-
formation to the system matrices. Su et al. considered the robust global coordinated tracking
of saturated systems with continuous-time dynamics and each agent being ANCBC, by design-
ing scheduled low-and-high gain feedback-based laws in [24]. Yet, the results in [24] were not
exactly distributed since the selection of the low-gain parameter in [24] related to the real-time
states of all agents. Beyond, Zhao and Lin analyzed the global leader-following consensus of
general linear discrete-time multi-agent systems with input saturation and each agent being AN-
CBC via multi-hop relay protocol in [25]. But it is the fact that the multi-hop relay protocol is
much more sensitive to the time delay and some other affections [26, 27].

This paper revisits the coordinated control of discrete-time networked systems subject to
input saturation from the perspective of getting rid of the restrictions on the initial states of
all agents, that is extending the semi-global results about the systems with input saturation in
[13, 14, 15, 16, 17, 18, 19] to the global ones. And the global consensus tracking of discrete-
time saturated networked systems with high-order integrator typed dynamics would be solved by
designing nonlinear feedback laws [28]. Compare with the existing global results about discrete-
time systems with input saturation in [21, 22, 23], on one hand, we dispense the premise that the
system should be neural stable. That is, in this paper, we focused on the systems in which there
are more than two eigenvalues equaling unity. On the other hand, we extend the systems with
double integrator dynamics to those with high-order integrator typed dynamics. Moreover, by
constructing the nonlinear feedback laws, both the distributed problem in [24] and the multi-hop
relay induced sensitive problem in [25] can be avoided.

The rest of this paper is arranged as follows. Section 2 provides the necessary preliminaries
and states the main problem will be solved. Section 3 clarifies the main results of this paper,
which will be verified in section 4. At last, section 5 concludes the total paper.

2. Preliminaries & Problem Statement

2.1. Notations
Throughout the paper, R and Rn×m are the set of all real numbers and n × m real matrices,

respectively. IN is the N-dimensional identity matrix. For any given matrix or vector A, AT and
AH denote its transpose and conjugate transpose, respectively, and A > 0 means each component
of A are positive. λmax(A) denotes the maximum eigenvalue of A, while A � (�)0 means that A
is positive (nonnegative) definite. For matrices A and B, A ⊗ B means the Kronecker product.

2.2. Graph theory
This paper considers the global consensus tracking problem of a saturated system with N

agents. We use a graph G =
{
V,E,W

}
to describe the communication relationship among the N

2
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agents, in which the vertex set V =
{
v1, v2, · · · , vN}

and the edge set E =
{(

vi, v j)| if there exist
an information channel between agent vi and agent v j } denote the agents in the network and the
neighboring interaction, respectively. W =

(
wi j) ∈ RN×N is the adjacency matrix, where

wi j =


1, if

(
vi, v j) ∈ E;

0, otherwise.

Let L = D−W be the Laplacian matrix of G, where D is a diagonal matrix with the i−th diagonal
element being

∑N
j=1 wi j.

Let G be a graph generated by G and an added vertex, labelled by v0. In G, v0 can affect
the agents in G but not vice versa. We introduce diagonal matrix H = diag

{
h1, h2, · · · , hN}

to
represent the communication relationship between agents in G and v0 and then

hi =


1, if thei − th agent in G can receive the information from v0;

0, otherwise.

And L + H is named the generated Laplacian matrix of G. As stated in [4], L + H � 0 if G is
connected and there is at least one agent in G informed by v0.

2.3. Problem Statement

In this paper, we aim at investigating the global consensus of discrete-time networked systems
subject to input saturation. Consider a networked system consists of N agents, in which each
agent moves in n dimensional Euclidean space and regulates itself according to the following
dynamics:

xi(k + 1) = Axi(k) + Bui(k), (1)

where xi(k) ∈ Rn×1 is the state of the ith agent at time step k, ui(k) ∈ Rm×1 is the control input,

ui(k) =
(

ui
1(k) ui

2(k) · · · ui
m(k)

)T
is the input control and it is asked to meet that

−∆ ≤ ui
q(k) ≤ ∆ for all q = 1, 2, · · · ,m,

where ∆ > 0 is the saturation level. A and B are the system matrices with

A =



1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 1
0 0 0 · · · 0 1



∈ Rn×n, B =



0
0
0
...
0
1



∈ Rn×m. (2)

The objective of this paper is to guide system (1) to track a virtual leader x0(k) in global
sense, in which the dynamics of the virtual leader is

x0(k + 1) = Ax0(k), (3)

with x0(k) ∈ Rn×1 is the state of the virtual leader at time step k. And the global consensus
tracking is defined in Definition 1.

3
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Definition 1. The system (1) can achieve global consensus, if for xi(0) ∈ Rn×1(i = 1, · · · ,N),
there exists

lim
k→∞

∥∥∥∥xi(k) − x0(k)
∥∥∥∥ = 0, i = 1, 2, · · · ,N.

Before going on, define

x̃i(k) = xi(k) − x0(k), x̃(k) =



x̃1(k)
x̃2(k)
...

x̃N(k)


,

then the error system of (1) and (3) is

x̃i(k) = Ax̃i(k) + Bui(k), (4)

and the global consensus tracking problem of system (1) is equivalent to the global stabilization
of the error system (4).

For a family of real number Θ =
{
θm

}
m=1,2,··· ,n, define matrices

AΘ =



1 θ2 θ3 · · · θn−1 θn

0 1 θ3 · · · θn−1 θn
...

...
...

. . .
...

...
0 0 0 · · · 1 θn

0 0 0 · · · 0 1



, BΘ =



1
1
...
1


. (5)

Based on these two matrices, we further define system

yi(k + 1) = AΘyi(k) + BΘ sat∆(ui(k)), (6)

where sat∆(ui(k)) =
(

sat∆(ui
1(k)) sat∆(ui

2(k)) · · · sat∆(ui
m(k))

)T
is a saturation function

with saturation level ∆ ([15, 16]). For convenience, we use the pair (A, B) and (AΘ, BΘ) to rep-
resent system (1) and system (6), respectively, throughout the paper. Lemma 1 discloses the
relationship between (A, B) and (AΘ, BΘ).

Lemma 1. [28] For any family of real number Θ = {θm}m=1,2,··· ,n, let (AΘ, BΘ) be defined by Eq.
(5). Then, for any controllable pair (AΘ, BΘ), there exists a coordinate change

yi(k) = PΘ x̃i(k),

such that system (4) becomes system (6).

Simulated by Lemma 1, the global consensus of system (1) can be transformed to that of
system (6). And in the following, we focus on system (6).

4
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3. Main Results

Theorem 1. Consider a connected networked systems consists of N agents in which each agent
steered by dynamics (1). If there exist a family of real number Θ =

{
θm

}
m=1,2,··· ,n satisfying

0 <
∑k−1

m=1 θm < θk < 1 for k ∈
{
2, 3, · · · , n

}
, (AΘ, BΘ) is controllable and AΘ − λiBΘθ is Schur

stable for i = 1, 2, · · · ,N, then the control laws

ui(k) = −σ
n∑

m=1

θmsatMm


1
σ

∑

j∈N(i)

wi j
(
yi

m(k) − y j
m(k) − 1

σ
hiyi

m(k)
)
 , (7)

can guide system (1) to achieve global consensus, where

θ =
(
θ1 θ2 · · · θn

)
,



Mn =1;

Mm =1 + αm
θm+1

θm

Mm+1 −
∣∣∣∣∣∣satMm+1


yi

m+1(k)

σ


∣∣∣∣∣∣

 ,m = 1, 2, · · · , n − 1

(8)

with yi = PΘxi, σ = ∆∑n
m=1 θm

and αm ∈ [0, 1](m = 1, 2, · · · , n).

Proof. Denote

zi(k) =
1
σ

yi(k),

Ξi
m(k) =

∑

j∈N(i)

wi j
(
zi

m(k) − z j
m(k)

)
− hizi

m(k),

Ξi(k) =
∑

j∈N(i)

wi j
(
zi(k) − z j(k)

)
− hiz(k),

z(k) =



z1(k)
z2(k)
...

zN(k)


,

then
zi(k + 1) =Aθz

i(k) + BθW
i(k),

W i(k) = −
n∑

m=1

θmsatMm


∑

j∈N(i)

wi j
(
zi

m(k) − z j
m(k) − hizi

m(k)
)


= −
n∑

m=1

θmsatMm

(
Ξi

m(k)
)

∈R.

(9)

Construct Lyapunov function

V(k) =

N∑

i=1

(
Ξi(k)

)T (
Ξi(k)

)
=

N∑

i=1

n∑

m=1

(
Ξi

m(k)
)2

:=
n∑

m=1

Vm(k), (10)

5
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with

Vm(k) =

N∑

i=1

(
Ξi

m(k)
)2

(11)

for all m = 1, 2, · · · , n. The consensus of system (9) will be proved by taking the derivative of
Vm(k) (m = 1, 2, · · · , n) according to Eq. (9).

First of all, taking the derivative of Vn(k) according to Eq. (9) yields

Vn(k + 1) − Vn(k) =

N∑

i=1

(
Ξi

n(k + 1)
)2 −

N∑

i=1

(
Ξi

n(k)
)2

=

N∑

i=1

(
Ξi

n(k) + W i(k)
)2 −

N∑

i=1

(
Ξi

n(k)
)2

=

N∑

i=1


(
W i(k)

)2 − 2Ξi
n(k)

n∑

m=1

θmsatMm

(
Ξi

m(k)
) .

Since 0 <
∑k−1

m=1 θm < θk < 1 for k = 2, 3, · · · , n, then

Vn(k + 1) − Vn(k) =

N∑

i=1

[(
W i(k)

)2 − 2
∣∣∣Ξi

n(k)W i(k)
∣∣∣
]

=

N∑

i=1

∣∣∣W i(k)
∣∣∣
[∣∣∣Wi(k)

∣∣∣ − 2
∣∣∣Ξi

n(k)
∣∣∣
]
.

and
∣∣∣W i(k)

∣∣∣ =

∣∣∣∣∣∣∣
−

n∑

m=1

θmsatMm

(
Ξi

m(k)
)
∣∣∣∣∣∣∣
≥ θn

∣∣∣∣satMn

(
Ξi

n(k)
)∣∣∣∣ −

n−1∑

m=1

θm

∣∣∣∣satMm

(
Ξi

m(k)
)∣∣∣∣ .

If Ξi
n(k) < [−1, 1], then

∣∣∣∣satMn

(
Ξi

n(k)
)∣∣∣∣ = 1 and further

∣∣∣W i(k)
∣∣∣ ≥θn −

n−1∑

m=1

θm

∣∣∣∣satMm

(
Ξi

m(k)
)∣∣∣∣

≥θn − θ1M1 −
n−1∑

m=2

θm

∣∣∣∣satMm

(
Ξi

m(k)
)∣∣∣∣

=θn − θ1

(
1 + α1

θ2

θ1

(
M2 −

∣∣∣∣satM2

(
Ξi

2(k)
)∣∣∣∣
))
−

n−1∑

m=2

θm

∣∣∣∣satMm

(
Ξi

m(k)
)∣∣∣∣

=θn − θ1 − θ2M2 + θ2

[
M2 −

∣∣∣∣satM2

(
Ξi

2(k)
)∣∣∣∣
]
− α1θ2

(
M2 −

∣∣∣∣satM2

(
Ξi

2(k)
)∣∣∣∣
)
−

n−1∑

m=3

θm

∣∣∣∣satMm

(
Ξi

m(k)
)∣∣∣∣

=θn − θ1 − θ2M2 + θ2(1 − α1)
(
M2 −

∣∣∣∣satM2

(
Ξi

2(k)
)∣∣∣∣
)
−

n−1∑

m=3

θm

∣∣∣∣satMm

(
Ξi

m(k)
)∣∣∣∣

≥θn − θ1 − θ2M2 −
n−1∑

m=3

θm

∣∣∣∣satMm

(
Ξi

m(k)
)∣∣∣∣ .

Substituting the definition of M2 into the right hand side of the above inequality, then it follows

∣∣∣W i(k)
∣∣∣ ≥ θn − θ1 − θ2 − θ3M3 −

n−1∑

m=4

θm

∣∣∣∣satMm

(
Ξi

m(k)
)∣∣∣∣ .

6
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Doing the same operation, it turns that

∣∣∣W i(k)
∣∣∣ ≥ θn −

n−1∑

m=1

θm > 0. (12)

On the other hand,

∣∣∣W i(k)
∣∣∣ ≤

n∑

m=1

θm = θn +

n−1∑

m=1

θm ≤ 2 − θn +

n−1∑

m=1

θm. (13)

Combing the fact Ξn
i (k) < [−1, 1] and Eq. (13), one has

∣∣∣W i(k)
∣∣∣ − 2

∣∣∣Ξn
i (k)

∣∣∣ ≤
∣∣∣W i(k)

∣∣∣ − 2 ≤ −θn +

n−1∑

m=1

θm = −
θn −

n−1∑

m=1

θm

 < 0. (14)

Then, it follows from Eq. (12) and Eq. (14) that

Vn(k + 1) − Vn(k) ≤ −
θn −

n−1∑

m=1

θm



2

< 0,

which implies that Ξi
n(k) would decrease and enter into [−1, 1] as time goes by, and then remains

in [−1, 1].
Second, taking the derivative of Vn−1(k) according to Eq. (9) yields

Vn−1(k + 1) − Vn−1(k) =

N∑

i=1

(
Ξi

n−1(k + 1)
)2 −

N∑

i=1

(
Ξi

n−1(k)
)2

=

N∑

i=1

(
Ξi

n−1(k) + θnΞi
n(k) + W i(k)

)2 −
N∑

i=1

(
Ξi

n−1(k)
)2

=

N∑

i=1



Ξ
i
n−1(k) −

n−1∑

m=1

θmsatMm

(
Ξi

m(k)
)


2

−
(
Ξi

n−1(k)
)2



=

N∑

i=1

∣∣∣∣∣∣∣

n−1∑

m=1

θmsatMm

(
Ξi

m(k)
)
∣∣∣∣∣∣∣



∣∣∣∣∣∣∣

n−1∑

m=1

θmsatMm

(
Ξi

m(k)
)
∣∣∣∣∣∣∣
− 2

∣∣∣Ξi
n−1(k)

∣∣∣


Similarly to the analysis for Vn(k + 1) − Vn(k), if Ξi
n−1(k) < [−1, 1],

Vn−1(k + 1) − Vn−1(k) = −
θn−1 −

n−2∑

m=1

θm



2

< 0,

which further implies that Ξi
n−1(k) will enter into and remain in [−1, 1].

Continuing the same operation to Ξi
n−1(k) for i = 1, 2, · · · , n − 2, it turns that Ξi(k) ∈

[−1, 1] × [−1, 1] × · · · × [−1, 1]︸                                   ︷︷                                   ︸
n

and the saturation on ui(k) in Eq. (7) can be avoided. Then,
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the updating dynamics of zi(k) is

zi(k + 1) =AΘzi(k) + BΘ


−

n∑

m=1

θm

∑

j∈N(i)

wi j
(
zi

m(k) − z j
m(k)

)
−

n∑

m=1

θmhizi
m(k)



=AΘzi(k) − BΘθΞ
i(k).

(15)

Furthermore,
Z(k + 1) =

[
IN ⊗ AΘ − (L + H) ⊗ BΘθ

]
z(k). (16)

The symmetry of L leads to that there exists orthogonal matrix S , such that

L + H = S T



λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN


S := S T ΣS .

Then, for V(k) defined in Eq. (10), let z(k) =
(
S ⊗ In

)
z(k), there exists

V(k + 1) =zT (k + 1)
(
(L + H)2 ⊗ In

)
z(k + 1)

=zT (k)
[(

IN ⊗ AΘ − (L + H) ⊗ BΘθ
)T (

(L + H)2 ⊗ In

)(
IN ⊗ AΘ − (L + H) ⊗ BΘθ

)

=zT (k)
[(

IN ⊗ AΘ − Σ ⊗ BΘθ
)T (

Σ2 ⊗ In

)(
IN ⊗ AΘ − Σ ⊗ BΘθ

)]
z(k)

=

N∑

i=1

(
λi

)2(
zi(k)

)T [(
AΘ − λiBΘθ

)T (
AΘ − λiBΘθ

)]
zi(k).

Since AΘ − λiBΘθ is Schur stable for i = 1, · · · ,N, then
(
AΘ − λiBΘθ

)T (
AΘ − λiBΘθ

)
− In ≺ 0 and

it follows

V(k + 1) − V(k) ≤
N∑

i=1

(
λi

)2(
zi(k)

)T
zi(k) − zT (k)

[
(L + H)2 ⊗ In

]
z(k)

=zT (k)
[
(L + H)2 ⊗ In

]
z(k) − zT (k)

[
(L + H)2 ⊗ In

]
z(k)

≤0,

(17)

where V(k + 1) − V(k) = 0 if and only if z(k) = 0. Moreover, the relationship among x̃i(k), yi(k)
and zi(k) induces that

lim
k→∞

x̃i(k) = 0, i = 1, 2, · · · ,N,
which further implies that the global consensus tracking of system (1) with the virtual leader (3)
can be achieved.

This completes the proof.

4. Numerical simulations

In this section, we provide numerical simulations to support our findings.
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We select

A =

(
1 1
0 1

)
, B =

(
0
1

)
.

The saturation level is ∆ = 2. To meet the precise of Theorem 1, we choose θ =
(
θ1 θ2

)
=(

1
6

1
4

)
. Obviously, one has

AΘ =

(
1 1

4
0 1

)
, BΘ =

(
1
1

)
,

and

PΘ =

(
1 1
0 −4

)
.

We choose a networked system consists of N = 6 agents and one virtual leader, where the
interaction among all agents and the virtual leader is described by matrices W and H as follows:

W =
1

10
×



0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0



, H =
1

10
×



0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0



.

In addition, we choose α1 = 1
2 ∈ [0, 1]. And the state of each agent, including that of the virtual

leader, is randomly selected from [−10, 10] × [−10, 10].
Figure 1 shows the convergence of the error states of all agents. It is shown that the error state

between each agent and the virtual leader would converge to zero as time goes by. As displayed
in Fig. 1 (b), yi(k)− y0(t) also converges to zero. The control input ui in Fig. 1 (c) always locates
in [−∆,∆] = [−2, 2] and approaches to zero. All the simulations verify the effectiveness of the
theoretical results.
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Figure 1: Global consensus tracking of system (4) with control input (7).

5. Conclusion

In this paper, we take the networked systems with input saturation into consideration and
focus on the global consensus tracking of this kind of systems. For saturated networked systems
with discrete-time high-order integrator dynamics, nonlinear feedback laws are constructed to
directly avoid the saturation function, and then sufficient conditions are provided to ensure the
global consensus tracking of the systems. Numerical simulations verify the theoretical results
we have obtained. In the near future, we will devote ourselves to the global coordinated control
of networked systems with input saturation and input additive disturbance as well as dead zone.
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