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Stability and Bifurcation of Delayed Fractional-Order Dual Congestion
Control Algorithms
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Abstract—In this technical note, fractional-order congestion con-
trol systems are introduced for the first time. In comparison with the
conventional integer-order dual congestion control algorithms, the
fractional control algorithms are more accurate and versatile. Bifur-
cation theory in fractional-order differential equations is still an out-
standing problem. Sufficient conditions for the occurrence of Hopf
bifurcations are extended from integer-order dynamical systems to
fractional-order cases. Then, these conditions are used to establish
the existence of Hopf bifurcations for the delayed fractional-order
model of dual congestion control algorithms proposed in this note.
Finally, the onsets of bifurcations are identified, where Hopf bifur-
cations occur and a family of oscillations bifurcate from the equi-
librium. Illustrative examples are also provided to demonstrate the
theoretical results.

Index Terms—Congestion control, fractional-order dynamical
systems, hopf bifurcation, stability.

I. INTRODUCTION

Research in dynamics and control of congestion in the Internet has
achieved considerable progresses based on integer-order differential
equations during the past two decades [1]–[5]. However, its applications
to real practical congestion systems are still limited due to the lack of
more accurate models of congestion control algorithms.

Fractional calculus is commonly believed to have stemmed from a
question raised in the year 1695 by de L’Hospital in a letter to Leibniz,
but its application to physics and engineering has been reported only
in recent years. It has been found that in many practical cases, sys-
tems can be more adequately described by fractional-order differential
equations. For instance, fractional-order models have been proposed
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to model a wide range of problems in electrical capacitors [6], vis-
coelastic materials [7], finance systems [8], transmission lines [9], and
neurons [10]. Also, in recent years, considerable attention has been
paid to using the great potential of fractional calculus in system control
issues, such as system approximation, system sampling, and design and
implementation of controllers [11]–[15].

Fractional-order derivatives provide an excellent instrument for the
description of memory and hereditary properties of various processes
due to the existence of a memory term in the model [16]. It has been
shown that for congestion control algorithms, the price at the link repre-
senting the congestion level is the solution of a delayed fractional-order
differential equation [17]. Unlike integer-order differential equations,
fractional-order differential equations are naturally related to mem-
ory effects and long-range dispersion processes, which exist in most
congestion control systems. Therefore, the fractional-order model is
more accurate than the classical integer-order model when modeling
congestion control algorithms.

One of the important properties of congestion control algorithms is
the stability. Sufficient conditions of stability have been obtained for
integer-order congestion systems [1]–[4]. However, it was found in
[18] that some commonly active queue management schemes coupled
with the current congestion avoidance transmission control protocol
(TCP) algorithm may lose the local stability due to an increase in
delays or capacity, or a decrease in the number of connections. The
loss of stability causes some nonlinear dynamical behaviors, such as
chaos and bifurcation. Thus, in addition to an investigation of stability,
Hopf bifurcation and control have also begun to draw much attention
for delayed integer-order congestion systems [19]–[22].

However, owing to limitations of the existing theories, few studies
of Hopf bifurcations for delayed fractional-order congestion systems
have been reported. It is worth mentioning that the qualitative theory of
Hopf bifurcations for the case of fractional-order dynamical systems
has not completely settled yet. Based on the observations arising from
numerical simulations, the conditions for the occurrence of Hopf bi-
furcations were only proposed for fractional-order dynamical systems
without time delays [23], [24]. It should be noted that a fractional-
order congestion control model was introduced in [17]. The delayed
fractional-order congestion control model can exhibit a Hopf bifurca-
tion (i.e., periodic oscillations appear) as the delay passes through the
critical value. Motivated by the above discussions, this note will estab-
lish some bifurcation conditions for delayed fractional-order dynamical
systems by choosing the system parameter as the bifurcation parameter
and will be devoted to investigate the stability and bifurcations for a
delayed fractional-order congestion control system.

This note is organized as follows. Section II summarizes some pre-
liminaries of fractional-order systems, establishes sufficient conditions
for the occurrence of Hopf bifurcations for general one-dimensional
(1-D) delayed fractional-order systems, and proposes a fractional-order
system of dual congestion control algorithms. Section III presents
the main theorems of stability and Hopf bifurcations for the delayed
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fractional-order congestion control system. Section IV concludes the
presentation.

II. PRELIMINARIES

A. Delayed Fractional-Order Systems

Definition 1 ([16]): For a continuous function f , with f ′ ∈
L1 (R+ ), the Caputo fractional derivative operator of order α ∈ (0, 1)
of f is defined in the following form:

C
0 Dα

t f (t) =
1

Γ(1 − α)

∫ t

0
(t − τ )−α f ′(τ )dτ (1)

where Γ(·) is the Gamma function.
Remark 1: When α → 1−, the fractional-order derivative

C
0 Dα

t f (t) converges to the integer-order derivative f ′(t) [25].
Remark 2: Equation (1) defines the classical uninitialized fractional

derivative. The definition of initialized fractional-order derivatives can
be found in [26] and [27].

Consider the n-dimensional linear fractional-order system with mul-
tiple time delays:

C
0 Dα

t xi (t) =
n∑

j=1

aij xj (t − τij ), i = 1, . . . , n (2)

where α ∈ (0, 1) for i = 1, . . . , n. The initial conditions are xi (t) =
φi (t), t ∈ [−τm ax , 0] for some continuous function φi (t), where
τm ax = max1≤i ,j≤n {τij }. The stability of the zero solution of system
(2) depends on the distribution of the roots of the associated character-
istic equation (3) as given below:

det

⎛
⎜⎜⎜⎝

sα − a11e−sτ1 1 −a12e−sτ1 2 · · · −a1ne−sτ1 n

−a21e−sτ2 1 sα − a22e−sτ2 2 · · · −a2ne−sτ2 n

...
...

. . .
...

−an1e−sτn 1 −an2e−sτn 2 · · · sα − anne−sτn n

⎞
⎟⎟⎟⎠=0.

(3)

Remark 3: Equation (2) describes the traditional fractional-order
system without considering the pseudostate value. A pseudostate space
description of fractional-order systems can be found in [28]–[30].

Theorem 1 ([31]): If all the roots of the characteristic equation (3)
have negative real parts, then the zero solution of system (2) is Lyapunov
globally asymptotically stable.

Remark 4: Theorem 1 indicates that the stability boundary for the
delayed fractional-order system (2) is the imaginary axis.

Remark 5: If τij = 0, i, j = 1, . . . , n, then Theorem 1 converts
into Matignon criterion [34]: if all the roots λs of the equation
det(λI − A) = 0 satisfy | arg(λ)| > απ/2, then the zero solution of
system (2) is Lyapunov globally asymptotically stable, where A =
(aij )n×n is the coefficient matrix and λ = sα . It can be seen that the sta-
bility boundary is described by | arg(λ)| = απ/2 (or | arg(s)| = π/2)
for the fractional-order system (2) without delays.

Remark 6: If all the eigenvalues λs of A satisfy | arg(λ)| > απ/2,
and the characteristic equation (3) has no purely imaginary roots for
any τij > 0, i, j = 1, . . . , n, then the zero solution of system (2) is
Lyapunov globally asymptotically stable (see [31, Corollary 3])

B. Stability and Hopf Bifurcation of 1-D Delayed
Fractional-Order Systems

There are some fundamental differences between the dynamical
behaviors of fractional-order and integer-order systems. One of the
fundamental differences is that unlike integer-order systems, the oscil-
latory responses of Caputo-based fractional-order systems cannot be

exactly periodic, but they can approach periodic solutions as time tends
to infinity [32], [33].

It is well known that the Hopf bifurcation is the birth of a limit cycle
from an equilibrium in integer-order dynamical systems, when the equi-
librium changes stability via a pair of purely imaginary eigenvalues.
However, the qualitative theory of Hopf bifurcations for fractional-
order dynamical systems is still an open question. Based on the obser-
vations from numerical simulations, the conditions for the occurrence
of Hopf bifurcations were proposed in [23] and [24] for fractional-
order dynamical systems without time delays, but were not proved
there. Furthermore, the conditions for the occurrence of Hopf bifurca-
tions for delayed fractional-order systems have not been reported yet.
In this section, we put forward the conditions for the occurrence of
Hopf bifurcations for 1-D delayed fractional-order systems.

Consider the following 1-D delayed fractional-order system:

C
0 Dα

t x(t) = f (x(t − τ ); μ) (4)

where α ∈ (0, 1) and μ is the bifurcation parameter. Suppose that
system (4) has an equilibrium point 0.

Theorem 2: If f ′(0; μ) < 0 and [−f ′(0; μ)]1/α �= 1
τ
[(2j + 1)π −

απ/2], j ∈ Z, then the zero solution of (4) is Lyapunov locally asymp-
totically stable.

Proof: The linearized system of (4) is given by

C
0 Dα

t x(t) = f ′(0; μ)x(t − τ ) (5)

with the characteristic equation

sα − f ′(0; μ)e−sτ = 0. (6)

Let s = iω = ω(cos π
2 + i sin π

2 )(ω > 0) be a root of (6). Then,

ωα
(
cos

απ

2
+ i sin

απ

2

)
− f ′(0; μ)(cos ωτ − i sin ωτ ) = 0.

Separating the real and imaginary parts gives

ωα cos(απ/2) − f ′(0; μ) cos ωτ = 0

ωα sin(απ/2) + f ′(0; μ) sin ωτ = 0.

Hence,

(ωα )2 + f ′2 (0; μ) − 2f ′(0; μ)ωα cos((απ/2) + ωτ ) = 0. (7)

Noting that f ′(0; μ) < 0, it follows that

(ωα )2 + f ′2 (0; μ) − 2f ′(0; μ)ωα cos((απ/2) + ωτ )

≥ (ωα )2 + f ′2 (0; μ) + 2f ′(0; μ)ωα

= (ωα + f ′(0; μ))2
.

Obviously, if [−f ′(0; μ)]1/α �= 1
τ
[(2j + 1)π − απ/2], then (7) has no

positive real roots, meaning that (6) has no purely imaginary roots with
positive imaginary parts.

Let s = −iω = ω[cos π
2 + i sin(− π

2 )](ω > 0) be a root of (6).
Similarly, it can be proved that (6) has no purely imaginary roots
with negative imaginary parts under the assumption [−f ′(0; μ)]1/α �=
1
τ
[(2j + 1)π − απ/2].
To sum up the above arguments, if [−f ′(0; μ)]1/α �= 1

τ
[(2j + 1)π −

απ/2], then the characteristic equation (6) has no purely imaginary
roots.

On the other side, it can be seen that the coefficient matrix of the
linearized system (5) has one eigenvalue λ = f ′(0; μ) < 0 satisfying
| arg(λ)| > απ/2. Applying Remark 6, the zero solution of (4) is
Lyapunov locally asymptotically stable. �

Theorem 3: If the following conditions hold
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1) μ = μj , where μj is the root of the equation

[−f ′(0; μ)]1/α =
1
τ

[(2j + 1)π − απ/2], j ∈ Z;

2) dRe[s(μ )]
dμ

∣∣
μ=μ j

�= 0, where s(μ) is the root of the characteristic

equation (6) and Re{·} denotes the real parts of the complex eigen-
values;

then the delayed fractional-order system (4) undergoes a Hopf bi-
furcation at the zero solution.

Proof: Theorem 1 indicates that the stability margin for delayed
fractional-order systems is the imaginary axis. Therefore, when a
complex eigenvalue of the characteristic equation crosses the stability
boundary: the imaginary axis, a Hopf bifurcation occurs in system (4),
where a branch of periodic oscillations appears from the zero solution.

From the proof of Theorem 2, Condition 1) implies that when
μ = μj , the characteristic equation (6) has a pair of purely imaginary
roots ±iω0 , where ω0 = [−f ′(0; μj )]1/α . Condition 2) satisfies the
transversality condition of the Hopf bifurcation of system (4). Hence,
a Hopf bifurcation occurs at the zero solution when μ = μj . �

C. Fractional-Order Model of Dual Congestion Control
Algorithms

The dual algorithm is one of important congestion control algo-
rithms in networks, which holds dynamics at links, but static functions
at sources. This algorithm can achieve very high utilization but is re-
stricted to a specific class of utility functions [35]. To facilitate a control
theoretic study, the congestion control algorithms are often converted
into delayed integer-order differential equations [1], [2], [5], [36].

Raina [19] introduced the following dynamical representation of dual
congestion control algorithms with a single link and a single delay:

d

dt
p(t) = κpm (t)(x(t − τ ) − C) (8)

where the variable p is the price at the link, τ is the communication
delay, κ > 0 is the gain parameter, and the scalar C > 0 is the capacity
of the bottleneck link. In addition, x(t) = D(p(t)) with D(p), p ≥ 0,
is a nonnegative continuous, strictly decreasing demand function. If
m = 0, then this is called the delay dual and a possible form of the
demand function was identified in [37] as

Exponential law : D(p) = Dmaxe
−γs p/ τ

where γs > 0 is chosen to ensure local stability and Dmax > C > 0 is
a maximum demand parameter. The fair dual corresponds to

m = 1, D(p) = (w/p)1/γ

where w > 0 may be viewed as a willingness to pay parameter of the
user and γ > 0 is the fair allocation parameter [38].

The integer-order model (8) of dual congestion control algorithms
has been extensively studied regarding its stability, bifurcation, and
control in the past years. In [19], the local Hopf bifurcation of model
(8) was considered by choosing the parameter κ as the bifurcation
parameter. The explicit conditions were derived to ensure the onset of
stable limit cycles as model (8) just loses its local stability, and the
direction of Hopf bifurcations was determined by applying the normal
form theory and center manifold theorem. In [21], by selecting the
delay τ as the bifurcation parameter, it was demonstrated that the fair
dual model (8) loses its stability and a Hopf bifurcation occurs when
the delay τ passes through critical values. Moreover, the bifurcating
periodic solution was calculated by means of the perturbation method.
In [22], the hybrid control was applied to realize the control of the
undesirable Hopf bifurcation of model (8).

In this note, we substitute the fractional-order Caputo derivative
(1) for the usual integer-order derivative in model (8) to obtain the
following delayed fractional-order model of dual congestion control
algorithms:

C
0 Dα

t p(t) = κpm (t)(x(t − τ ) − C) (9)

where α ∈ (0, 1].

III. STABILITY AND BIFURCATION

Suppose that p∗ is a nonzero equilibrium of (9). Then, it satisfies the
following equation:

D(p∗) = C. (10)

Remark 7: It should be underlined that (10) does not depend on
the fractional order q ∈ (0, 1). Due to the properties of the Caputo
fractional-order derivative, it has been concluded in [39] and [40] that
p∗ is an equilibrium of the fractional-order system (9) with fractional
order q ∈ (0, 1) if and only if it is an equilibrium of the integer-order
system (8). Thus, the same results hold for the existence, uniqueness
or multiplicity of equilibria of fractional-order systems, as in the case
of integer-order systems. However, this fact of equilibria is no longer
true for the initialization issues of pseudostate space representations in
fractional-order systems [41], [42].

In the following, the stability and bifurcation properties of the de-
layed fractional-order model (9) will be investigated in the case of two
special dual congestion control algorithms: the delay dual algorithm
and the fair dual algorithm.

A. Case of the Delay Dual Algorithm

The fractional-order system (9) of delay dual congestion control
algorithms [19], [37] is described by

C
0 Dα

t p(t) = κ(x(t − τ ) − C) (11)

where x(t − τ ) = Dmaxe
−γs p (t−τ )/τ . Let u(t) = p(t) − p∗, where

p∗ = −(τ/γs ) ln(C/Dmax), and shift the equilibrium p∗ to the origin.
The linearized system of (11) is given by

C
0 Dα

t u(t) = −(κCγs/τ )u(t − τ ) (12)

with the characteristic equation

sα + (κCγs/τ )e−sτ = 0. (13)

Theorem 4: If (κCγs/τ )1/α �= 1
τ
[(2j + 1)π − απ/2], where

j ∈ Z, then the equilibrium p∗ of system (11) is Lyapunov locally
asymptotically stable.

Proof: Assume that s = iω = ω(cos π
2 + i sin π

2 )(ω > 0) is a root
of (13). Then, one obtains

ωα cos(απ/2) + (κCγs/τ ) cos ωτ = 0 (14a)

ωα sin(απ/2) − (κCγs/τ ) sin ωτ = 0. (14b)

Taking square on the both the sides of (14a), (14b) and summing them
up gives

(ωα )2 + (κCγs/τ )2 + 2ωα (κCγs/τ ) cos((απ/2) + ωτ ) = 0.
(15)

Notice that κCγs/τ > 0. It is easy to see that

(ωα )2 + (κCγs/τ )2 + 2ωα (κCγs/τ ) cos((απ/2) + ωτ )

≥ (ωα )2 + (κCγs/τ )2 − 2ωα (κCγs/τ )

= (ωα − κCγs/τ )2 .
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Obviously, if (κCγs/τ )1/α �= 1
τ
[(2j + 1)π − απ/2], then (15) has

no positive real roots, meaning that (13) has no purely imaginary roots
with positive imaginary parts.

Similarly, it can be proved that (13) has no purely imaginary roots
with negative imaginary parts under the assumption (κCγs/τ )1/α �=
1
τ
[(2j + 1)π − απ/2].
Therefore, if (κCγs/τ )1/α �= 1

τ
[(2j + 1)π − απ/2], then the char-

acteristic equation (13) has no purely imaginary roots.
Moreover, it can be seen that the coefficient matrix A of the lin-

earized model (12) has one eigenvalue λ = −κCγs/τ < 0 satisfying
| arg(λ)| > απ/2. Applying Remark 6, the equilibrium p∗ of (11) is
Lyapunov asymptotically stable, thus completing the proof. �

Remark 8: The stability of congestion control algorithms has been
studied based on integer-order dynamical systems in [1]–[4], [38].
However, to the best of the authors’ knowledge, the theoretical results
on the stability of fractional-order dynamical systems of congestion
control algorithms have not been reported yet.

Lemma 1: If κ = κj , j = 0, 1, . . ., then (13) has a pair of purely
imaginary roots ±iω0 , where

κj = [(2j + 1)π − απ/2]α τ 1−α /(Cγs ) (16a)

ω0 = (κj Cγs/τ )1/α . (16b)

Proof: It can be seen from the proof of Theorem 4 that (13) has a
pair of purely imaginary roots when (κCγs/τ )1/α = 1

τ
[(2j + 1)π −

απ/2]. Therefore, the conclusion follows immediately. �
Remark 9: Lemma 1 illustrates that the proposed condition 1) in

Theorem 3 is reached for the delayed fractional-order system (11) of
delay dual congestion control algorithms when (16a), (16b) holds.

Lemma 2: Let s(κ) = ρ(κ) + iω(κ) be the root of (13) satisfying
ρ(κj ) = 0 and ω(κj ) = ω0 > 0, j = 0, 1, . . .. Then,

dρ

dκ

∣∣∣∣
κ=κ j

> 0.

Proof: Substituting s(κ) into (13) and differentiating both the sides
of the resulting equation with respect to κ yields

αsα−1 ds

dκ
+ C

γs

τ
e−sτ

(
1 − κτ

ds

dκ

)
= 0.

Thus,

ds

dκ
=

Cγse
−sτ

Cγs τκe−sτ − ατsα−1 .

Note that s(κ) = ρ(κ) + iω(κ) = r(cos θ + i sin θ) is the root of (13).
One has

ds

dκ
=

Cγse
−ρτ [cos(ωτ ) − i sin(ωτ )]

Cγsτκe−ρτ [cos(ωτ ) − i sin(ωτ )] − ατ [ρ + iω]α−1 .

From this one obtains

dρ

dκ
= Cγse

−ρτ M (κ) cos ωτ + N (κ) sin ωτ

M 2 (κ) + N 2 (κ)

in which

M (κ) = Cγsτκe−ρτ cos ωτ − ατrα−1 cos(α − 1)θ

N (κ) = Cγsτκe−ρτ sin ωτ + ατrα−1 sin(α − 1)θ.

Replacing κ by κj , it follows that

dρ

dκ

∣∣∣∣
κ=κ j

= Cγs
M (κj ) cos ω0τ + N (κj ) sin ω0τ

M 2 (κj ) + N 2 (κj )

= Cγs

Cγs τκj − ατωα−1
0 cos[ω0τ + (α − 1) π

2 ]
M 2 (κj ) + N 2 (κj )

where

M (κj ) = Cγsτκj cos ω0τ − ατωα−1
0 cos((α − 1)π/2)

N (κj ) = Cγsτκj sin ω0τ + ατωα−1
0 sin((α − 1)π/2).

It can be seen from (16a), (16b) that ω0τ = (2j + 1)π − απ/2, im-
plying that cos[ω0τ + (α − 1)π/2] = 0. Therefore,

dρ

dκ

∣∣∣∣
κ=κ j

=
C2γ2

s τκj

M 2 (κj ) + N 2 (κj )
> 0.

The conclusion follows. �
Remark 10: Lemma 2 indicates that the transversality condition 2)

in Theorem 3 is satisfied for the delayed fractional-order system (11)
of delay dual congestion control algorithms.

Theorem 5: For system (11), the following results hold.
1) The equilibrium p∗ of system (11) is asymptotically stable for

κ ∈ (0, κ0 ), and unstable when κ > κ0 .
2) System (11) undergoes a Hopf bifurcation at the equilibrium p∗

when κ = κj , j = 0, 1, . . .. Here κj is defined as in (16a), (16b).
Proof: From (16b), (16b) it is known that 0 < κ0 < κ1 < κ2 <

· · · .
1) The definition of κ0 implies that the condition (κCγs/τ )1/α �=

1
τ
[(2j + 1)π − απ/2] stated in Theorem 4 is satisfied when κ ∈

(0, κ0 ). Thus, system (11) is asymptotically stable for κ ∈ (0, κ0 ).
On the other hand, from Lemma 1, the characteristic equation (13)
has a pair of purely imaginary roots when κ = κ0 . Together with
Lemma 2, (13) has at least a root with positive real part when
κ > κ0 . Thus, the conclusion follows.

2) From Remarks 9 and 10, we know that the proposed conditions
1) and 2) for the occurrence of Hopf bifurcations in Theorem 3
are satisfied for the fractional-order system (11). Hence, a Hopf
bifurcation occurs at the equilibrium p∗ when κ = κj .

�
Remark 11: The Hopf bifurcation theory of fractional-order dy-

namical systems is still an open problem. In [23] and [24], the con-
ditions for the occurrence of Hopf bifurcations were constructed for
fractional-order systems without delays based on the observations from
numerical simulations. However, there are few theoretical results on the
Hopf bifurcation of delayed fractional-order systems. Theorem 5 gives
sufficient conditions for the occurrence of Hopf bifurcations in delayed
fractional-order congestion control systems for the first time.

Example 1: Let the link capacity be 1.25 Mb/s and the time unit be
40 ms. If the packet sizes are 1000 bytes each, then the link capacity
can be expressed as C = 50 packets per time unit [21]. In addition, we
set Dmax = 70, γs = 2, and the communication delay τ is 3 ms. The
nonzero equilibrium is p∗ = 0.5047. For system (11) with α = 0.86,
it follows from (16a), (16b) that

κ0 = 0.0192, ω0 = 0.5969.

From Theorems 4 and 5, it is known that when κ ∈ (0, κ0 ), the tra-
jectories converge to the equilibrium p∗, as shown in Fig. 1, while
with κ being increased to pass through κ0 , the equilibrium p∗ loses
its stability and a Hopf bifurcation occurs, as shown in Fig. 2. The
numerical solution is derived by using the Adams–Bashforth–Moulton
predictor–corrector method [43].
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Fig. 1. Equilibrium p∗ = 0.5047 of system (11) with α = 0.86 is
asymptotically stable, where Dmax = 70, C = 50, γs = 2, τ = 3, and κ =
0.018 < κ0 = 0.0192.

Fig. 2. Periodic oscillation bifurcates from the equilibrium p∗ = 0.5047
of system (11) with α = 0.86, where Dmax = 70, C = 50, γs = 2, τ = 3,
and κ = 0.02 > κ0 = 0.0192.

Theorem 6: For the bifurcation curve κ0 (α) = (π − απ/2)α

τ 1−α /(Cγs ) in (16a), (16b), the following results hold.
1) If τ ≥ π, then κ0 (α) is a monotonically decreasing function in

(0, 1].
2) If 0 < τ ≤ π/(2e), then κ0 (α) is a monotonically increasing func-

tion in (0, 1].
3) If π/(2e) < τ < π, then κ0 (α) is monotonically increasing when

α ∈ (0, α∗), and monotonically decreasing when α ∈ (α∗, 1],
where α∗ is the unique positive root of h(α) = ln τ .

Proof: It follows from the definition of κ0 (α) that

κ′
0 (α) =

(π − απ
2 )α τ 1−α

Cγs

[h(α) − ln τ ]

where h(α) = ln(π − απ/2) − (απ/2)/(π − απ/2). It is easy to
prove that

h′(α) = − π/2
π − απ/2

− π2/2
(π − απ/2)2 < 0

which indicates that h(α) is a monotonically decreasing function in
(0, 1]. Thus, we have ln(π/2) − 1 = h(1) ≤ h(α) < h(0) = ln π.
1) If τ ≥ π, then h(α) − ln τ < ln π − ln τ ≤ 0 for α ∈ (0, 1]. Note

that C > 0, γs > 0, and (π − απ/2)α > 0. Therefore, we have

κ′
0 (α) < 0, implying that κ0 (α) is a monotonically decreasing

function in (0, 1].
2) If 0 < τ ≤ π/(2e), then h(α) − ln τ ≥ ln(π/2) − 1 − ln τ ≥ 0.

Thus, we have κ′
0 (α) ≥ 0 for α ∈ (0, 1]. This implies that κ0 (α)

is a monotonically increasing function in (0, 1].
3) If π/(2e) < τ < π, then h(α) − ln τ > 0 for α ∈ (0, α∗), and

h(α) − ln τ < 0 when α ∈ (α∗, 1]. This implies that κ′
0 (α) > 0

for α ∈ (0, α∗), and κ′
0 (α) < 0 for α ∈ (α∗, 1]. Hence, the proof

is complete.
�

The effect of the order and delay variation on the response of system
(11) is illustrated in Figs. 3 and 4. Fig. 3 shows the bifurcation curves of
system (11) in the α−κ0 plane. With increasing the delay τ , the critical
value κ0 increases for a fixed order α, that is to say, the onset of the
Hopf bifurcation is postponed. Thus, the stability domain is extended,
and system (11) possesses a stable price at the link in a larger delay.
Fig. 4 displays the bifurcation surface of system (11) in the (α, τ, κ0 )
space.

B. Case of the Fair Dual Algorithm

The fractional-order congestion control system (9) of fair dual algo-
rithms [19], [38] is described by

C
0 Dα

t p(t) = κp(t)(x(t − τ ) − C) (17)

where x(t − τ ) = (w/p(t − τ ))1/γ . Let u(t) = p(t) − p∗, where
p∗ = w/Cγ . The linearized system of (17) is given by

C
0 Dα

t u(t) = −(κC/γ)u(t − τ )

with the characteristic equation

sα + (κC/γ)e−sτ = 0. (18)

Theorem 7: If (κC/γ)1/α �= 1
τ
[(2j + 1)π − απ/2], where j ∈ Z,

then the equilibrium p∗ of system (17) is Lyapunov asymptotically
stable.

The proof of Theorem 7 is similar to the proof of Theorem 4. From
Theorem 7, it is straightforward to obtain the following result.

Lemma 3: If κ = κj , j = 0, 1, . . ., then (18) has a pair of purely
imaginary roots ±iω0 , where

κj = [(2j + 1)π − απ/2]α γ/(Cτα ) (19a)

ω0 = (κj C/γ)1/α . (19b)

Lemma 4: Let s(κ) = ρ(κ) + iω(κ) be the root of (18) satisfying
ρ(κj ) = 0 and ω(κj ) = ω0 > 0, j = 0, 1, . . .. Then,

dρ

dκ

∣∣∣∣
κ=κ j

=
C2τκj

M 2 (κj ) + N 2 (κj )
> 0

where

M (κj ) = Cτκj cos ω0τ − αγωα−1
0 cos((α − 1)π/2)

N (κj ) = Cτκj sin ω0τ + αγωα−1
0 sin((α − 1)π/2).

The proof of Lemma 4 is similar to the proof of Lemma 2.
Theorem 8: For system (17), the following results hold.

1) The equilibrium p∗ of system (17) is asymptotically stable for
κ ∈ (0, κ0 ), and unstable when κ > κ0 .

2) System (17) undergoes a Hopf bifurcation at the equilibrium p∗

when κ = κj , j = 0, 1, . . .. Here κj is defined as in (19a), (19b).
The proof of Theorem 8 is similar to that of Theorem 5.
Note that the appearance of γ can dictate the onset κ0 (α, τ ) =

(π − απ/2)α γ/(Cτα ) of the Hopf bifurcation. We obtain the TCP
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Fig. 3. Bifurcation curves κ0 (α) = (π − απ/2)α τ 1−α /(Cγs ) of sys-
tem (11) with C = 50, γs = 2, and different values of τ : τ , respectively,
equals 30, 15, 10, 4, 2, 1, 0.8, 0.6, 0.4, and 0.2.

fairness [38] with γ = 2 and the proportional fairness [21] with γ = 1.
Therefore, the TCP fair algorithm will have a Hopf bifurcation with
twice the onset of its proportionally fair counterpart. The effect of the
order and delay variation on the response of system (17) is illustrated
in Figs. 5–7. Figs. 5 and 6 show the bifurcation curves of system (17)
in the α−κ0 plane for the TCP fairness and the proportional fairness,
respectively. For a fixed order α, decreasing τ postpones the onset
of the Hopf bifurcation and reduces the instability. Fig. 7 displays
the bifurcation surfaces of system (17) for the TCP fairness and the
proportional fairness.

Fig. 4. Bifurcation surface κ0 (α, τ ) = (π − απ/2)α τ 1−α /(Cγs ) of
system (11) with C = 50, γs = 2.

Fig. 5. Bifurcation curves κ0 (α, τ ) = (π − απ/2)α γ/(Cτ α ) of system
(17) with C = 50, γ = 2, and different values of τ : τ , respectively, equals
30, 15, 10, 4, 2, 1, 0.8, 0.6, 0.4, and 0.2.
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Fig. 6. Bifurcation curves κ0 (α, τ ) = (π − απ/2)α γ/(Cτ α ) of system
(17) with C = 50, γ = 1, and different values of τ : τ , respectively, equals
30, 15, 10, 4, 2, 1, 0.8, 0.6, 0.4, and 0.2.

Fig. 7. Bifurcation surface κ0 (α, τ ) = (π − απ/2)α γ/(Cτ α ) of system
(17) with C = 50 and different values of γ : γ , respectively, equals 2
and 1.

IV. CONCLUSION

There have been many results on dynamical characteristics for a va-
riety of integer-order congestion control systems over the past decades.
However, the study of dynamics for more accurate fractional-order con-
gestion systems can be more significant. In this note, we have extended
a delayed integer-order model of dual congestion control algorithms
to a delayed fractional-order counterpart. The stability and bifurca-
tion properties have been investigated for the delayed fractional-order

system in the case of two special dual congestion control algorithms:
the delay dual algorithm and the fair dual algorithm. The stability con-
ditions for the delayed fractional-order congestion system have been
established based on the stability theorem on delayed fractional-order
differential equations. We have proposed the conditions for the occur-
rence of Hopf bifurcations for general delayed fractional-order systems.
Our delayed fractional-order system can exhibit a Hopf-type bifurca-
tion (i.e., periodic oscillations appear) as the gain parameter passes
through the critical values which can be determined exactly. Bifurca-
tion curves and bifurcation surfaces have been displayed. Moreover,
it has been observed that the critical values of Hopf bifurcations are
sensitive to the change of the order and delay. These observations allow
us to design the Hopf bifurcation of congestion control systems with
the desired bifurcation point by adjusting the order and delay.

Although the Caputo derivative has its own limitation in describing
the characteristics of dynamical systems, it has been demonstrated
in recent years that such a derivative is a useful tool for modeling
many physical systems [44]. For some fractional-order systems, the
“state” of the system is not given by the dynamic variable vector,
because the initialization vector, traditionally a vector of constants, has
been shown to be time varying [26], [28]. Our future work will focus
on the Hopf bifurcation analysis for initialized fractional-order dual
congestion control algorithms.
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