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Abstract—It has been demonstrated in a large number of
experimental results that small RNAs (sRNAs) play a vital role
in gene regulation processes. Thus, the gene regulation process
is dominated by sRNAs in addition to messenger RNAs and
proteins. However, the regulation mechanism of sRNAs is not
well understood and there are few models considering the effect
of sRNAs. So it is of realistic biological background to include
sRNAs when modeling gene networks. In this paper, sRNAs are
incorporated into the process of gene expression and a new dif-
ferential equation model is put forward to describe cyclic genetic
regulatory networks with sRNAs and multiple delays. We mainly
investigate the stability and bifurcation criteria for two cases:
1) positive cyclic genetic regulatory networks and 2) negative
cyclic genetic regulatory networks. For a positive cyclic genetic
regulatory network, it is revealed that there may exist more than
one equilibrium and the multistability can appear. Sufficient con-
ditions are established for the delay-independent stability and
fold bifurcations. It is found that the dynamics of positive cyclic
gene networks has no bearing on time delays, but depends on
the biochemical parameters, the Hill coefficient and the equilib-
rium itself. For a negative cyclic genetic regulatory network, it is
proved that there exists a unique equilibrium. Delay-dependent
conditions for the stability are derived, and the existence of Hopf
bifurcations is examined. Different from the delay-independent
stability of positive gain networks, the stability of equilibrium
is determined not only by the biochemical parameters, the Hill
coefficient and the equilibrium itself, but also by the total delay.
At last, three illustrative examples are provided to validate the
major results.

Index Terms—Bifurcation, cyclic gene networks, multiple
delays, oscillations, stability.

I. INTRODUCTION

RHYTHMIC phenomena play a crucial role to maintain
various biological functions of living organisms and one

of the best studied rhythmic phenomena so far is circadian
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rhythms with a period of 24 h [1], [2]. It has long been sug-
gested that circadian rhythms are produced by limit cycle
oscillators at the molecular level from the genetic regula-
tory feedback loops [3]. Besides periodic oscillators, the other
important feature in the process of gene representation is the
stable steady state [4]. Thus, it is desirable to explore the
conditions of the stability and the existence of oscillations
in gene networks. It should be noted that Hopf bifurcations
can induce the transitions between stable states and periodic
oscillations [5]. Therefore, apart from the stability and peri-
odic oscillations, the investigation of Hopf bifurcations is also
crucial for gene networks.

Gene networks are composed of a great number of gene
nodes, interrelating and interacting with each other. The
study of dynamics of gene networks has become very
important in describing the interaction mechanism between
gene nodes in gene expression [6]–[8]. Hence, dynamical
behaviors of gene networks have attracted growing atten-
tion from many scholars and numerous results have been
reported [9]–[23].

It has been confirmed by considerable experimental evi-
dence that the cyclic structure is a general feature in genetic
networks [24], [25]. In recent years, many scholars have
probed the influence of the cyclic structure on the dynamics of
stability, Hopf bifurcations as well as periodic oscillations in
gene networks. For example, the asymptotical behaviors were
extensively examined for a ring-structured genetic model with
repression. It was found that multiple stable states may be
coexistent if the number of genes is even, while periodic oscil-
lations may exist if the number of genes is odd [26]. A cyclic
repressilatory network model was designed and constructed
in Escherichia coli [4]. This inhibition network contains three
genes, namely, lacl, cl, and tetR, while every gene is repressed
by its upstream node. It should be mentioned that the nega-
tive cyclic gene network with three nodes generated oscillatory
phenomena for the first time. The dynamical features of ring-
structured gene networks with only positive loops [27] or
K-repressive and K-inducible groups [28] were investigated by
applying the theory of monotone dynamical systems. In [29], a
class of ring-structured networks with n genes and time delays
were discussed. The delay-independent stability of the equi-
librium state was examined, and then the existence of Hopf
bifurcations was determined. In [30], a class of 2n-dimensional
gene networks with ring structure and mixed delays were con-
sidered. The specific conditions to ensure the stability and
Hopf bifurcations were deduced in positive and negative gain
networks. In [31], a dual-ring genetic network with delays
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was put forward. The multistability and bifurcation analysis
was conducted. By applying control theoretic tools, a general
framework to formulate negative cyclic gene networks was
proposed, and some conditions that ensure the stability and
oscillation existence were derived in [32] and [33].

It is noteworthy that in addition to the ring structure, the
hub structure is also a common topology in intracellular
networks [34], [35]. Different from the ring-structured network
models considered in the previous works, in [36], a class of
hub-structured gene network models of arbitrary dimension
were put forward, and sufficient conditions for the stability and
bifurcating oscillations were given using the Hopf bifurcation
theory.

In the last few years, it has been demonstrated by exper-
imental evidence that RNAs play crucial roles in the reg-
ulation and control of genetic events (see a recent review
in [37]). A large quantity of RNA is transcribed from the
genome, of which only a small fraction is messenger RNAs
(mRNAs) that will be translated into proteins. Many other
small RNAs (sRNAs), microRNAs, or noncoding RNAs are
also transcribed, ranging in size over several orders of magni-
tude from several kilobases down to around 20 nucleotides.
These sRNAs appear to be dominant operation in a num-
ber of genetic processes and are guardians of an organism’s
genome [38]–[41]. sRNAs play an important role in gene regu-
lation processes, including the regulation of transcription and
translation, the modification of chromatin structure, and the
processing, modification and stability of RNA and protein
molecules [42], [43]. Fig. 1 shows that produced in paral-
lel with mRNAs, sRNAs play a number of roles involved in
the regulation of transcription and translation events. Hence,
it is natural to assume that sRNAs will have a significant
impact on the dynamical performances of genetic networks.
However, previous models of gene regulation processes in cells
involve only the interaction between mRNAs and proteins [4],
[6]–[30], [32], [33], [36]. To better understand the regula-
tion mechanism of sRNAs, this paper is to explore dynamical
behaviors for cyclic gene networks mediated by sRNAs.

Although there have been some studies on Hopf bifurca-
tions and oscillations for gene networks mediated by sRNAs
in the past few years, it should be noticed that only the
simplified genetic network models with a few delays and a
few nodes have been considered. For instance, sRNA was
incorporated into gene expression in [44] and the investi-
gation on stability as well as Hopf bifurcations was carried
out for a single-gene model with sRNAs. But only two time
delays were considered in such simplified model. The effect of
sRNAs on dynamical behaviors was addressed in detail [45].
The conditions that ensure the stability and existence of
Hopf bifurcations were established for a two-gene network
model including four delays and sRNAs. A single-gene model
mediated by microRNA (sRNA) with time delays and reaction-
diffusion terms was studied in [46]. Some conditions for local
stability and Hopf bifurcations were derived, and the direction
and stability of bifurcating oscillations were determined by
applying the normal form theory and center manifold reduc-
tion. This paper will propose a class of n-gene network models
with ring structure and sRNAs. Then the stability, oscillations

Fig. 1. sRNA regulation.

and Hopf bifurcations will be investigated for delayed cyclic
gene networks with sRNAs.

Besides Hopf bifurcations, it has been proved that there also
exist fold bifurcations in genetic regulatory networks without
sRNAs [29], [30], [36]. A fold bifurcation is a local bifur-
cation indicating that a dynamical system has the ability to
present the change of the number of equilibria. This can help
us to determine the number of equilibria by regulating the bio-
chemical parameters for genetic regulatory networks. Different
from [29], [30], and [36], we will take the effect of sRNAs
into account and establish the existence condition of fold bifur-
cations for cyclic genetic regulatory networks mediated by
sRNAs in this paper.

This paper is arranged as follows. Section II introduces
the model under study, together with relevant notations.
Section III discusses when positive equilibria are existent,
and derives the characteristic equation around any equilibrium
point. Section IV analyzes the stability and Hopf bifurca-
tions of delayed cyclic gene networks including sRNAs.
Section V provides three numerical examples to demonstrate
the obtained results. Section VI illustrates general biological
insights. Lastly, Section VII concludes this paper.

II. MODEL DESCRIPTION AND NOTATION

Gene networks are often described by a differential equation
model [24], [25]. In a ring-structured network with n genes,
each gene contains products of mRNA, sRNA, and protein.
It should be noted that the ith gene only receives information
from the previous gene with delay τpi−1. We can express such
network by the following equations [29], [30], [44], [45]:

ṁi(t) = −cimi(t) − disi(t)mi(t) + gi
(
pi−1

(
t − τpi−1

))

ṡi(t) = ei − disi(t)mi(t) − fisi(t)

ṗi(t) = −bipi(t) + aimi(t − τmi) (1)

where i is the node number; when i = 1, let i − 1 = n. mi,
si, and pi represent, respectively, the concentrations of mRNA,
sRNA, and protein of node i. ci, fi, and bi denote, respectively,
the degradation rates of mRNA, sRNA, and protein of node i.
ai stands for the synthesis rate with which protein i is gener-
ated by mRNA i in the ribosome. di denotes the paring rate of
sRNA i with mRNA i. ei represents the transcription rate of
sRNA i. All of the above parameters are positive. τpi and τmi

are known, respectively, as the discrete time delays for mRNA
i and protein i. In addition, gi(·) is the positive function that
reflects the synthesis mechanism of mRNA i from protein i−1.
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In network (1), the third equation depicts the process of
translation. In addition to the linear degradation of protein
i, aimi(t − τmi) represents the linear translational activity of
mRNA i to protein i, which reflects the fact that one protein
is produced from one mRNA only in network (1). The first
two equations of network (1) describe the process of transcrip-
tion. Besides the linear degradation of mRNA i and sRNA i,
disi(t)mi(t) denotes the nonlinear degradation of mRNA i and
sRNA i, which is induced by the association of two RNAs.
Due to the ring structure of (1), the mRNA of node i is reg-
ulated by the protein produced from the previous node i − 1
indicated in the expression of gi(pi−1(t − τpi−1)). The protein,
as a transcription factor, can directly promote the transcrip-
tional process of mRNA by binding its activator to the mRNA’s
promoters, while the transcriptional process of sRNA can be
indirectly influenced by the protein through mRNA. sRNAs
directly affect the level of mRNA transcription by accelerat-
ing its degradation rates. This is achieved through binding of
sRNA by partial nucleotide sequence complementarity to its
target mRNA sequences.

The function gi(pi−1(t)) stands for the repressor or activator
action of protein i − 1 to mRNA i, and it can be expressed in
the following Hill form as:

gi(pi−1(t)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αi(pi−1(t)/βi)
hi

1 + (pi−1(t)/βi)
hi

if gene i − 1 is an activator of gene i
αi

1 + (pi−1(t)/βi)
hi

if gene i − 1 is a repressor of gene i

where αi, βi are positive constants, and the Hill coefficient
hi > 0 represents the degree of cooperativity. It is easy to see
that the activator function and repressor function are strictly
increasing and strictly decreasing, respectively, and they are
both bounded.

Let νi be a class of structure variables, and denote νi = 1
when gene i − 1 is an activator of gene i; otherwise, νi = 0.
Then we can express gi(pi−1) in the unified form as follows:

gi(pi−1) = (−1)νiαiβ
hi
i

β
hi
i + (pi−1)

hi
+ νiαi. (2)

It is obvious that the total number ν of repressors in the whole
cyclic network can be written as

ν = n −
n∑

i=1

νi.

If ν is odd, then the cyclic genetic regulatory network is topo-
logically the same as a negative gain network and it can be
called a negative cyclic gene network; if ν is even, then it can
be called a positive cyclic gene network [30].

Remark 1: Due to the complexity of bifurcation analysis,
most of pioneering works have been only limited to low-
dimensional models of genetic networks with a few nodes as
well as a few delays [21], [23], [47]–[49]. In this paper, we
will investigate the stability, oscillations, and Hopf bifurca-
tions in a class of high-dimensional genetic networks with a
large number of nodes and multiple time delays.

Remark 2: The previous models of cyclic genetic regula-
tory networks involve only the interaction between mRNAs
and proteins of node i [4], [24]–[33], which can be expressed
by the first and third equations of model (1), respectively. The
second equation of network (1) depicts the regulation process
of sRNA of node i. The presence of sRNAs makes the ana-
lytical work much harder since it not only makes the network
structure more complex but also extends the dimension of the
system from 2n to 3n. This paper will consider a class of
ring-structured gene networks mediated by sRNAs.

III. EQUILIBRIUM AND CHARACTERISTIC EQUATION

A. Existence of Equilibria

Assume that network (1) has a possible equilibrium
(M∗, S∗, P∗), where M∗ = (m∗

1, m∗
2, . . . , m∗

n), S∗ =
(s∗

1, s∗
2, . . . , s∗

n) and P∗ = (p∗
1, p∗

2, . . . , p∗
n). An equilibrium is

the solution of the equations given below:

0 = −cim
∗
i − dis

∗
i m∗

i + gi
(
p∗

i−1

)
(3a)

0 = ei − dis
∗
i m∗

i − fis
∗
i (3b)

0 = −bip
∗
i + aim

∗
i , i = 1, 2, . . . , n. (3c)

Substituting (3b) and (3c) into (3a) yields Fi(p∗
i−1, p∗

i ) = 0,
where

Fi(ξ, η) = bici

ai
η + bidieiη

bidiη + aifi
− gi(ξ). (4)

Lemma 1: There exist a neighborhood B of p∗
i−1 in R, and

a unique function Fi : B → R such that

p∗
i = Fi

(
p∗

i−1

)
, Fi(ξ, Fi(ξ)) = 0, for all ξ ∈ B

and this function Fi is continuously differentiable with

dFi(ξ)

dξ
= g′

i(ξ)

/[
bici

ai
+ aibidieifi

(bidiη + aifi)2

]
.

Proof: Calculating the partial derivative gives

∂Fi(ξ, η)

∂η

∣∣∣
∣
(

p∗
i−1,p

∗
i

) = bici

ai
+ aibidieifi
(
bidip∗

i + aifi
)2 > 0.

It can be seen by the implicit function theorem that the
function Fi is continuously differentiable and satisfies that
p∗

i = Fi(p∗
i−1) and Fi(ξ, Fi(ξ)) = 0. In addition,

dFi(ξ)

dξ
= −∂Fi

∂ξ

/
∂Fi

∂η

= g′
i(ξ)

/[
bici

ai
+ aibidieifi

(bidiη + aifi)2

]
.

The conclusion follows.
Theorem 1: There exists an odd number of positive equilib-

ria for the cyclic gene network (1). In particular, there exists a
unique positive equilibrium for a negative cyclic gene network.

Proof: Let

	(u) = u − Fn(Fn−1(· · · (F1(u))))

where the implicit function Fi(u) is as defined in Lemma 1.
Each zero p∗

n of 	(u) determines an equilibrium of
network (1).
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Notice that gi(u) is positive and bounded. It is straightfor-
ward to obtain

	(0) = −Fn(Fn−1(· · · (F1(0)))) < 0

	(+∞) = lim
u→+∞

[
u − Fn(Fn−1(· · · (F1(u))))

] = +∞.

So, for network (1), there is surely a positive number p∗
n satis-

fying 	(p∗
n) = 0, which together with geometric properties of

	(u) implies that 	(u) has an odd number of positive zeroes.
It follows from (2) that:

dgi(u)

du
= (−1)1+νi hiαiβ

hi
i(

β
hi
i + uhi

)2
uhi−1 = (−1)1−νi hiαiβ

hi
i(

β
hi
i + uhi

)2
uhi−1.

Thus, sign(dgi(u)/du) = (−1)1−νi . Furthermore, from
Lemma 1, we obtain

sign

(
dFi(u)

du

)
= sign

(
dgi(u)

du

)
= (−1)1−νi

sign

(
dFn(Fn−1(· · · (F1(u))))

du

)
=

n∏

i=1

(−1)1−νi = (−1)ν .

If ν is odd, then we have 	 ′(u) > 0, which means that the
function 	(u) is strictly increasing in [0,+∞). So, 	(u) has
a unique positive zero p∗

n. The conclusion follows.
Remark 3: Theorem 1 reveals that cyclic gene networks

mediated by sRNAs may have more than one positive equi-
librium. Furthermore, the number of positive equilibria must
be odd.

B. Characteristic Equation

Let xi(t) = mi(t)− m∗
i , yi(t) = si(t)− s∗

i and zi(t) = pi(t)−
p∗

i . Then the linearized system of (1) around the equilibrium
(M∗, S∗, P∗) takes the following form:

ẋi(t) = −(ci + dis
∗
i

)
xi(t) − dim

∗
i yi(t)

+ g′
i

(
p∗

i−1

)
zi−1
(
t − τpi−1

)

ẏi(t) = −dis
∗
i xi(t) − (fi + dim

∗
i

)
yi(t)

żi(t) = aixi(t − τmi) − bizi(t). (5)

The characteristic equation of network (1) is given by


(λ) = det

⎛

⎝
λIn + A E −N

D λIn + B 0
−M 0 λIn + C

⎞

⎠ = 0 (6)

where In is an n × n identity matrix. And

A = diag
(
c1 + d1s∗

1, c2 + d2s∗
2, . . . , cn + dns∗

n

)

B = diag
(
f1 + d1m∗

1, f2 + d2m∗
2, . . . , fn + dnm∗

n

)

C = diag(b1, b2, . . . , bn)

D = diag
(
d1s∗

1, d2s∗
2, . . . , dns∗

n

)

E = diag
(
d1m∗

1, d2m∗
2, . . . , dnm∗

n

)

M = diag
(
a1e−λτm1 , a2e−λτm2 , . . . , ane−λτmn

)

are all n × n diagonal matrices. N = (nij) is an n × n matrix,
where nij = g′

i(p
∗
i−1)e

−λτpi−1 if j = i − 1, and otherwise nij =
0. Let C represents the set of all complex numbers. Then a
solution λ of the characteristic equation (6) is in C. It can

be seen by the definition of (1) that n × n matrices λIn + A,
In + B, λIn + C, D, E, and M are all diagonal. With some
calculation, (6) becomes


(λ) = det
(
(λIn + A) − N(λIn + A)−1M − E(λIn + B)−1D

)

× det(λIn + B) × det(λIn + C)

=
n∏

i=1

(λ + bi)
[(

λ + fi + dim
∗
i

)(
λ + ci + dis

∗
i

)− d2
i s∗

i m∗
i

]

− e−λτ
n∏

i=1

ai
(
λ + fi + dim

∗
i

)
g′

i

(
p∗

i−1

) = 0 (7)

where

τ =
n∑

i=1

(
τmi + τpi

)
.

Denote

L(λ) =
n∏

i=1

(λ + bi)
[(

λ + fi + dim
∗
i

)(
λ + ci + dis

∗
i

)− d2
i s∗

i m∗
i

]

Q(λ) =
n∏

i=1

ai
(
λ + fi + dim

∗
i

)
g′

i

(
p∗

i−1

)
.

Then (7) is expressible as


(λ) = L(λ) − Q(λ)e−λτ

= λ3n + l1λ
3n−1 + · · · + l3n−1λ + l3n

−
[
q0λ

n + q1λ
n−1 + · · · + qn−1λ + qn

]
e−λτ

= 0 (8)

where

l3n =
n∏

i=1

bi
(
fici + fidis

∗
i + cidim

∗
i

)
> 0

qn =
n∏

i=1

ai
(
fi + dim

∗
i

)
g′

i

(
p∗

i−1

)
.

Let

γ = l3n

qn
=
∏n

i=1 bi
(
fici + fidis∗

i + cidim∗
i

)

∏n
i=1 ai

(
fi + dim∗

i

)
g′

i

(
p∗

i−1

)

be the product of biochemical parameters and the concentra-
tion level of a certain equilibrium.

Remark 4: The distribution of roots of the characteristic
equation is not dependent on each single delay, instead it relies
upon the total of multiple delays. Moreover, the characteris-
tic equation is influenced by a multiplication of each function
between different gene nodes rather than a single function.
Thus, the size of cyclic gene networks plays a vital role in the
characteristic equation.

Remark 5: The sign of qn is related closely to the quantity
of repressors instead of activators. Specifically, the sign of qn

is decided by the quantity of repressors in terms of whether it
is odd or even.
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IV. STABILITY AND BIFURCATION ANALYSIS

As we know, the distribution of characteristic roots deter-
mines whether equilibria in the cyclic gene network (1) involv-
ing sRNAs are stable or not. The equilibrium of network (1) is
asymptotically stable if the real parts of the roots of the char-
acteristic equations are all negative, while the equilibrium of
network (1) is unstable if there is at least one characteristic root
whose real part is positive [50]. In general, network (1) may
suffer a loss of stability through two ways. Either the charac-
teristic equation (7) has a pair of purely imaginary eigenvalues
λ = ±iω, or has a simple real eigenvalue λ = 0, with regard
to certain value of the parameter. These two cases correspond
to a Hopf bifurcation when λ = ±iω and a fold bifurcation
when λ = 0, respectively [51].

A. Positive Cyclic Gene Networks

For a positive cyclic gene network, the total number ν of
repressors is even and the network may have more than one
equilibrium. Note that qn > 0 and γ > 0.

Theorem 2: For the positive cyclic gene network (1), the
following results hold.

1) If γ < 1, then an arbitrary equilibrium of network (1)
is unstable for any time delay τ ≥ 0.

2) If γ > 1, then an arbitrary equilibrium of network (1) is
locally asymptotically stable for any time delay τ ≥ 0.

3) When γ = 1, network (1) undergoes a fold bifurcation.
Proof: The value of γ decides the distribution of the

characteristic roots of (7).
1) If γ < 1, then we have


(0) =
n∏

i=1

bi

[(
fi + dim

∗
i

)(
ci + dis

∗
i

)− d2
i m∗

i s∗
i

]

−
n∏

i=1

ai
(
fi + dim

∗
i

)
g′

i

(
p∗

i−1

)

< 0.

Moreover, note that 
(+∞) = limλ→+∞ 
(λ) = +∞. Due
to the continuity of function 
(λ), there is at least a root λ0 >

0 satisfying 
(λ0) = 0 for any τ ≥ 0. Thus, the conclusion
follows.

2) Denote by C+ the open right-half of the complex plane
and by C+ its closure. Obviously, we have two analytic
functions L(λ) and Q(λ) in C+. Thus,

|G(λ)| = ∣∣Q(λ)e−λτ /L(λ)
∣∣, ∀τ ≥ 0

is subharmonic in C+ [52]. Based on the theory on subhar-
monic functions [52], we can get the supλ∈C+ |G(λ)| shown
at the top of the next page.

Thus, if γ > 1, then we have

|G(λ)| ≤ sup
λ∈C+

|G(λ)| = 1

γ
< 1.

For any λ ∈ C+ and for any τ ≥ 0

|
(λ)| = ∣∣L(λ) − Q(λ)e−λτ
∣∣ ≥ |L(λ)| − ∣∣Q(λ)e−λτ

∣∣ > 0

which implies that (7) has no roots with non-negative real
parts. So the conclusion follows immediately.

3) It is clearly seen that the characteristic equation (7) has
a root λ = 0 when γ = 1. Hence, a fold bifurcation appears
in network (1), which completes the proof.

Remark 6: Theorem 2 indicates that the stability of posi-
tive cyclic gene networks is delay-independent. The value of
γ consisting of the equilibrium itself and biochemical fac-
tors decides whether an equilibrium has the local stability or
instability for a positive cyclic gene network.

B. Negative Cyclic Gene Networks

For a negative cyclic gene network, there is an odd total
number ν of repressors. A unique equilibrium is existent for
this type of genetic format, and qn < 0, γ < 0.

Let iω(ω > 0) be a root of (8). Then

LR + iLI − (QR + iQI)e
−iωτ = 0 (10)

where LR = Re(L(iω)), QR = Re(Q(iω)), LI = Im(L(iω)),
and QI = Im(Q(iω)). So the following relations hold:

QR(ω) cos(ωτ) − QI(ω) sin(ωτ) = LR(ω)

QR(ω) sin(ωτ) + QI(ω) cos(ωτ) = LI(ω). (11)

Hence, ω satisfies the following equation:

L2
R(ω) + L2

I (ω) − Q2
R(ω) − Q2

I (ω) = 0. (12)

Let

H(ω) = L2
R(ω) + L2

I (ω) − Q2
R(ω) − Q2

I (ω)

= ω6n + r2ω
6n−2 + · · · + r6n−2ω

2 + r6n

where r6n = l23n − q2
n. Denote

h(z) = z3n + r2z3n−1 + · · · + r6n−2z + r6n. (13)

Lemma 2: If −1 < γ < 0, then there exists at least one
positive root for (12).

Proof: Obviously, if −1 < γ < 0, then we have that

H(0) = r6n =
[

n∏

i=1

bi
(
fici + fidis

∗
i + cidim

∗
i

)
]2

−
[

n∏

i=1

ai
(
fi + dim

∗
i

)
g′

i

(
p∗

i−1

)
]2

< 0.

Considering the continuity of H(ω) and limω→+∞ H(ω) =
+∞, there thus exists at least one positive root for (12).

Assume that there exist positive roots for (12). Without loss
of generality, we suppose that for (12) there are at most 3n
positive roots, denoted by ωk, k = 1, 2, . . . , 3n. From (11), we
have

cos(ωkτ) = LR(ωk)QR(ωk) + LI(ωk)QI(ωk)

Q2
R(ωk) + Q2

I (ωk)
.

Thus, if we define

τ
(k)
j = 1

ωk

(

arccos
LR(ωk)QR(ωk) + LI(ωk)QI(ωk)

Q2
R(ωk) + Q2

I (ωk)
+ 2jπ

)

(14)
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sup
λ∈C+

|G(λ)| = sup
ω≥0

|G(iω)| = sup
ω≥0

∣∣∣∣
Q(iω)e−iωτ

L(iω)

∣∣∣∣

= sup
ω≥0

∣∣∏n
i=1 ai

(
iω + fi + dim∗

i

)
g′

i

(
p∗

i−1

)∣∣
∣
∣∏n

i=1(iω + bi)
[(

iω + fi + dim∗
i

)(
iω + ci + dis∗

i

)− d2
i s∗

i m∗
i

]∣∣

= sup
ω≥0

∏n
i=1 ai

√
ω2 + (fi + dim∗

i

)2
g′

i

(
p∗

i−1

)

∏n
i=1

√
ω2 + b2

i

√
ω4 +

[(
fi + dim∗

i

)2 + (ci + dis∗
i

)2 + 2d2
i m∗

i s∗
i

]
ω2 + (fici + fidis∗

i + cidim∗
i

)2

=
∏n

i=1 ai
(
fi + dim∗

i

)
g′

i

(
p∗

i−1

)

∏n
i=1 bi

(
fici + fidis∗

i + cidim∗
i

)

= 1

γ
(9)

where j = 0, 1, . . . ; k = 1, 2, . . . , 3n, then there are a pair of
purely imaginary roots ±iωk for (7) when τ = τ

(k)
j . Denote

τ0 = τ
(k0)
0 = min

k∈{1,2,...,3n}{τ
(k)
0 }, ω0 = ωk0 . (15)

Next, we discuss (7) based on a result in [53].
Lemma 3 [53]: Introduce the exponential polynomial

P
(
λ, e−λτ1 , . . . , e−λτm

)

= λn + p(0)
1 λn−1 + · · · + p(0)

n−1λ + p(0)
n

+
[
p(1)

1 λn−1 + · · · + p(1)
n−1λ + p(1)

n

]
e−λτ1 + · · ·

+
[
p(m)

1 λn−1 + · · · + p(m)
n−1λ + p(m)

n

]
e−λτm

where τi ≥ 0 (i = 1, 2, . . . , m), and p(i)
j (i =

0, 1, . . . , m; j = 1, 2, . . . , n) are known coefficients. When
(τ1, τ2, . . . , τm) changes, the total of the order of the zeros
of P(λ, e−λτ1 , . . . , e−λτm) on C+ will vary only if there is a
zero occurring on or crossing the imaginary axis.

Suppose that (7) has the root λ(τ) = α(τ) + iω(τ) which
satisfies α(τ

(k)
j ) = 0 and ω(τ

(k)
j ) = ωk. Then, we have the

transversality condition stated as follows.
Lemma 4: If zk = ω2

k and h′(zk) �= 0, in which h(z) is as
given in (13), then we have

[
d(Reλ(τ))

dτ

]

τ=τ
(k)
j

�= 0

with the sign of [(d(Reλ(τ)))/dτ ]
τ=τ

(k)
j

being in agreement

with that of h′(zk).
The proof of Lemma 4 follows the same steps as the proof

of [34, Lemma 2], and thus is skipped here.
If τ = 0, then (7) turns into


(λ) = λ3n + u3n−1λ
3n−1 + · · · + u1λ + u0 = 0 (16)

where u3n−1 = l1, u3n−2 = l2, . . . , un+1 = l2n−1, and un =
l2n − q0, un−1 = l2n+1 − q1, . . . , u1 = l3n−1 − qn−1, u0 =
l3n − qn.

Define T1, T2, T3, . . . , T3n as shown at the bottom of the
next page, where ui = 0 for i < 0.

Theorem 3: If −1 < γ < 0, h′(z0) > 0, ui > 0 (i =
0, 1, . . . , 3n − 1), and Ti > 0 (i = 1, 2, . . . , 3n), then the

unique equilibrium (M∗, S∗, P∗) of the negative cyclic gene
network (1) is locally asymptotically stable for τ ∈ [0, τ0), a
Hopf bifurcation occurs at the critical value τ = τ0, and the
equilibrium becomes unstable when τ > τ0, with τ0 being as
defined in (15).

Proof: If all the coefficients, ui (i = 0, 1, . . . , 3n − 1) of
the characteristic equation (16), and Ti (i = 1, 2, . . . , 3n) are
positive, then it follows from the Routh–Hurwitz criterion [54]
that the real parts of the eigenvalues of (16) are all negative.
That is to say, the real parts of the eigenvalues of (7) are all
negative when τ = 0. It is also evident from Lemma 2 that
if −1 < γ < 0, then (12) has at least one positive eigen-
value. This implies that there exist purely imaginary roots
±iωk for (7) when τ = τ

(k)
j . Clearly, τ0 is the smallest value

of τ
(k)
j to ensure that there exist a pair of complex roots ±iω0

for (7) when τ = τ0. It can be seen from Lemma 3 that the
number of the roots with positive real parts of (7) is the same
as the one of (16) when τ ∈ [0, τ0). Thus, the real parts of the
roots of (7) are all negative when τ ∈ [0, τ0), which indicates
that the equilibrium of network (1) is stable.

It is obvious from Lemma 4 that [(d(Reλ(τ)))/dτ ]τ=τ0 > 0
if h′(z0) > 0. This implies that there exist at least a couple of
roots with positive real parts for (7) when τ > τ0. Therefore,
the equilibrium of (1) is unstable.

From Lemma 4, the transversality condition of Hopf
bifurcations is reached under the given conditions. Thereby,
network (1) undergoes a Hopf bifurcation when τ = τ0.

Remark 7: Theorem 3 indicates that the stability of negative
cyclic gene networks is delay-dependent.

V. NUMERICAL SIMULATIONS

Two specific cyclic networks with three gene nodes are pro-
vided to verify the theoretical findings given in the preceding
sections. One is a synthetic positive cyclic gene network [30],
and the other is a synthetic negative cyclic gene network,
which is called the “repressilator” [4], [25], [29]. Fig. 2 shows
the schematic of tri-node cyclic structure, where the sym-
bol “→” stands for the activation of one node to another,
while the symbol “�” means the inhibition of one node to
another.
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(a) (b)

Fig. 2. Schematic of tri-node ring structure. (a) Positive cyclic genetic
regulatory network. (b) Negative cyclic genetic regulatory network.

Fig. 3. Fold bifurcation diagram of equilibria of the positive cyclic gene
network (17) with c = 1, b = 0.2, a = 0.2, d = 0.3, e = 0.5, f = 0.6, h = 2
and the transcription coefficient α as the bifurcation parameter.

Example 1: Consider the following positive cyclic gene
network with three nodes depicted in Fig. 2(a):

ṁ1(t) = −cm1(t) − ds1(t)m1(t) + α

1 + ph
3

(
t − τp3

)

ṁ2(t) = −cm2(t) − ds2(t)m2(t) + α

1 + ph
1

(
t − τp1

)

ṁ3(t) = −cm3(t) − ds3(t)m3(t) + αph
2

(
t − τp2

)

1 + ph
2

(
t − τp2

)

ṡi(t) = e − dsi(t)mi(t) − fsi(t)

ṗi(t) = −bpi(t) + ami(t − τmi), i = 1, 2, 3. (17)

In this positive cyclic gene network, ci = c, di = d, ei = e,
fi = f , bi = b, ai = a, hi = h, and αi = α, i = 1, 2, 3.
From Theorem 1, it is known that the positive tri-gene cyclic
network (17) has more than one positive equilibrium, and there
must be an odd number of equilibria.

It should be mentioned that the existence of fold bifurca-
tions was examined for positive cyclic gene networks without
sRNAs in [29], [30], and [36]. We will illustrate that the fold
bifurcation may also occur in positive cyclic gene networks
with sRNAs. Take c = 1, b = 0.2, a = 0.2, d = 0.3, e = 0.5,

f = 0.6, h = 2 and choose the transcription coefficient α

as the bifurcation parameter. Fig. 3 displays the fold bifur-
cation diagram of equilibria in terms of the parameter α for
network (17), in which blue solid curves stand for the stable
concentration of protein p1, while red dashed-dotted curves
stand for the unstable concentration of protein p1.

Fig. 3 illustrates the effect of the transcription coefficient α

on the equilibrium of protein p1. For small values of α, only a
stable positive equilibrium exists, and the equilibrium concen-
tration of protein p1 is increasing with α. When α increases
and passes through the critical value α0 = 2.3195, a fold bifur-
cation will appear. Meanwhile, three positive equilibria emerge
for the positive tri-gene cyclic network (17), with two stable
equilibria and one unstable equilibrium, for sufficiently big
values of α. It should be pointed out that the maximum number
of equilibria for positive cyclic gene networks depends on the
size of networks (the number of gene nodes). The greater the
size of the network is, the higher chance there occur multiple
equilibria. Each equilibrium may have different stability fea-
tures, and the multistability occurs for positive gene cyclic
networks.

Let α = 2 < α0, and all the other parameters are
fixed. A positive equilibrium (M∗, S∗, P∗) uniquely exists
for network (17), where m∗

1 = 1.6291, m∗
2 = 0.4547,

m∗
3 = 0.2811, s∗

1 = 0.4592, s∗
2 = 0.679, s∗

3 = 0.7306,
p∗

1 = 1.6291, p∗
2 = 0.4547, p∗

3 = 0.2811. It follows
that the parameter γ for the equilibrium (M∗, S∗, P∗) is
γ = 2.3864 > 1. By Theorem 2, the unique equilibrium
(M∗, S∗, P∗) of network (17) is delay-independently stable.
Dynamical trajectories under different initial conditions with
random values eventually approach the positive equilibrium
(M∗, S∗, P∗), which can be observed in Fig. 4.

When α = 2.5 > α0, there are three positive equilibria for
network (17)
(

M1∗, S1∗, P1∗) = (2.0757, 0.3894, 0.2698, 0.4089, 0.6975

0.7343, 2.0757, 0.3894, 0.2698)(
M2∗, S2∗, P2∗) = (0.593, 1.6254, 1.592, 0.6428, 0.4597

0.464, 0.593, 1.6254, 1.592)(
M3∗, S3∗, P3∗) = (1.2832, 0.8015, 0.8311, 0.5076, 0.5949

0.5887, 1.2832, 0.8015, 0.8311)

where (Mi∗, Si∗, Pi∗) = (mi∗
1 , mi∗

2 , mi∗
3 , si∗

1 , si∗
2 , si∗

3 , pi∗
1 , pi∗

2 ,
pi∗

3 ), i = 1, 2, 3. For these three equilibria, the parame-
ters γ are γ1 = 2.2476 > 1, γ2 = 2.0841 > 1, and
γ3 = 0.707 < 1, respectively. By Theorem 2, the equi-
libria (M1∗, S1∗, P1∗) and (M2∗, S2∗, P2∗) of network (17)
are locally delay-independently stable, while the equilibrium
(M3∗, S3∗, P3∗) is unstable. Different initial conditions deter-
mine the ultimate convergence of network (17) to which

T1 = u3n−1, T2 =
∣∣
∣∣
u3n−1 1
u3n−3 u3n−2

∣∣
∣∣, T3 =

∣∣∣
∣∣∣

u3n−1 1 0
u3n−3 u3n−2 u3n−1
u3n−5 u3n−4 u3n−3

∣∣∣
∣∣∣
, . . . , T3n =

∣∣∣
∣∣∣∣

u3n−1 · · · 0
...

. . .
...

0 · · · u0

∣∣∣
∣∣∣∣
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Fig. 4. Waveform plots of the positive cyclic gene network (17) with
c = 1, b = 0.2, a = 0.2, d = 0.3, e = 0.5, f = 0.6, h = 2, τp1 = τp2 =
τp3 = 2, τm1 = τm2 = τm3 = 3, and α = 2 < α0. Network (17) has
local delay-independent stability around the equilibrium (M∗, S∗, P∗). Initial
conditions are (M0, S0, P0) = i × (ζ1, ζ2, . . . , ζ9), i = 1, 2, . . . , 50, where
ζj(i = 1, 2, . . . , 9) are the random numbers between 0 and 1.

equilibrium, (M1∗, S1∗, P1∗) or (M2∗, S2∗, P2∗). Under differ-
ent initial conditions with random values, the tri-gene positive
cyclic network (17) presents the phenomenon of bistability as
illustrated in Fig. 5. The trajectories of network (17) with dif-
ferent initial conditions converge to either (M1∗, S1∗, P1∗) or
(M2∗, S2∗, P2∗).

Example 2: Consider the negative cyclic gene network
(repressilator) with three nodes illustrated in Fig. 2(b)

ṁi(t) = −cmi(t) − dsi(t)mi(t) + α

1 + ph
i−1

(
t − τpi−1

)

ṡi(t) = e − dsi(t)mi(t) − fsi(t)

ṗi(t) = −bpi(t) + ami(t − τmi), i = 1, 2, 3. (18)

The repressilator network (18) is cyclically symmetrical,
where ci = c, di = d, ei = e, fi = f , bi = b, ai = a,

Fig. 5. Waveform plots of the positive cyclic genetic regulatory network (17)
with c = 1, b = 0.2, a = 0.2, d = 0.3, e = 0.5, f = 0.6, h = 2,
τp1 = τp2 = τp3 = 2, τm1 = τm2 = τm3 = 3, and α = 2.5 > α0.
Network (17) has local delay-independent stability around the equilibria
(M1∗, S1∗, P1∗) and (M2∗, S2∗, P2∗). Initial conditions are (M0, S0, P0) =
i×(ζ1, ζ2, . . . , ζ9), i = 1, 2, . . . , 50, where ζj(i = 1, 2, . . . , 9) are the random
numbers between 0 and 1.

hi = h, and αi = α, i = 1, 2, 3. According to Theorem 1, we
can see that a positive equilibrium (M∗, S∗, P∗) is uniquely
existent for the repressilator network (18) and it satisfies that
m∗

1 = m∗
2 = m∗

3, s∗
1 = s∗

2 = s∗
3, and p∗

1 = p∗
2 = p∗

3.
We choose the total delay τ as the bifurcation parameter

and take c = 2, b = 2.5, d = 1, e = 1, f = 0.5, a = 1, h = 2,
and α = 10. Next, we explore the Hopf bifurcation in the
repressilatory network (18). In this case, for network (18),
there exists a unique positive equilibrium given by
(
M∗, S∗, P∗) = (2.2987, 2.2987, 2.2987, 0.3573, 0.3573

0.3573, 0.9195, 0.9195, 0.9195).

By calculation, the real parts of the roots of (16) are all
negative. So the repressilator network (18) has local stabil-
ity when τ = ∑3

i=1(τmi + τpi) = 0. It should be mentioned
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Fig. 6. Waveform plots of the negative cyclic genetic regulatory network (18)
with c = 2, b = 2.5, d = 1, e = 1, f = 0.5, a = 1, h = 2, α = 10, and the
initial condition (M0, S0, P0) = i × (ζ1, ζ2, . . . , ζ9), i = 1, 2, . . . , 50, where
ζj(i = 1, 2, . . . , 9) are the random numbers between 0 and 1. Network (18)
is asymptotically stable at the unique equilibrium (M∗, S∗, P∗), where τ =∑3

i=1(τmi + τpi) = 2.1 < τ0 = 2.2496.

that network (18) is not locally delay-independently stable,
but is delay-dependently stable. It can be calculated that
γ = −0.8725 ∈ (−1, 0), which satisfies the condition stated in
Lemma 2. Then there is the positive root ω0 = 0.4405 for (12),
which is also unique. From (14), the critical value is given by
τ0 = 2.2496. It can be seen from Theorem 3 that network (18)
is locally stable at the equilibrium (M∗, S∗, P∗) for τ ∈ [0, τ0),
but unstable for τ ∈ (τ0,+∞). Figs. 6 and 7 illustrate the tran-
sition between the stable equilibrium and periodic oscillation
as the total delay τ varies. The trajectories of (18) converge
to (M∗, S∗, P∗) when τ = 2.1 < τ0 as shown in Fig. 6. A
Hopf bifurcation occurs for network (18) when τ = τ0. The
oscillator trajectories of (18) are displayed when τ = 2.6 > τ0
in Fig. 7. It can be found from Fig. 8 that the amplitudes of
oscillators increase evidently with the total delay τ .

Fig. 7. Waveform plots of the negative cyclic genetic regulatory network (18)
with c = 2, b = 2.5, d = 1, e = 1, f = 0.5, a = 1, h = 2, α = 10, and the
initial condition (M0, S0, P0) = (ζ1, ζ2, . . . , ζ9), where ζj(i = 1, 2, . . . , 9)

are the random numbers between 0 and 1. The periodic oscillations occur,
where τ =∑3

i=1(τmi + τpi) = 2.6 > τ0 = 2.2496.

Example 3: In this example, we apply our theoretical
results to large-scale cyclic networks consisting of a large
number of genes and study the effect of the network size (the
number of genes) on the dynamics of cyclic gene regulatory
networks. Consider the following general high-dimensional
negative cyclic gene network with n genes:

ṁi(t) = −cmi(t) − dsi(t)mi(t) + α

1 + ph
i−1

(
t − τp

)

ṡi(t) = e − dsi(t)mi(t) − fsi(t)

ṗi(t) = −μpi(t) + μmi(t − τm), i = 1, 2, . . . , n (19)

where n is an odd number. To investigate the essential
dynamical properties of large-scale cyclic genetic regulatory
networks, we make a simplification that ci = c, di = d, ei = e,
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Fig. 8. Waveform plots of the negative cyclic genetic regulatory network (18)
with c = 2, b = 2.5, d = 1, e = 1, f = 0.5, a = 1, h = 2, α = 10, and the
initial condition (M0, S0, P0) = (ζ1, ζ2, . . . , ζ9), where ζj(i = 1, 2, . . . , 9)

are the random numbers between 0 and 1. The large-amplitude oscillations
occur, where τ =∑3

i=1(τmi + τpi) = 3.7 > τ0 = 2.2496.

fi = f , ai = bi = μ, hi = h, αi = α, τmi = τm, and
τpi = τp, i = 1, 2, . . . , n in (1). Noted that such a simplifica-
tion is natural and standard for exploring qualitative properties
of biochemical systems [4], [55], [56]. It can be seen that
network (19) considered in this example is a generalization of
the repressilator network with n = 3 genes [4], the pentila-
tor network with n = 5 genes [55], and the negative cyclic
network with n = 7 genes [32]. However, the network model
in the previous literatures did not consider the function effect
of sRNAs in gene regulation processes.

We set the parameters as follows: c = 1, μ = 1, e =
0.5, d = 0.6, f = 0.25, h = 2, and α = 2. The num-
ber of genes is n = 9. The unique positive equilibrium
of network (19) is then calculated as (M∗, S∗, P∗), where
m∗

i = 0.8393, s∗
i = 0.6635 and p∗

i = 0.8393, i = 1, 2, . . . , 9.

Fig. 9. Waveform plots of the negative cyclic gene regulatory network (19)
with n = 9, c = 1, μ = 1, e = 0.5, d = 0.6, f = 0.25, h = 2, α = 2, and the
initial condition (M0, S0, P0) = (ζ1, ζ2, . . . , ζ9), where ζj(i = 1, 2, . . . , 9)

are the random numbers between 0 and 1. Network (19) is asymptotically
stable at the unique equilibrium (M∗, S∗, P∗), where τ = 9 × (τm + τp) =
1.8 < τ0 = 8.2858.

Note that the condition γ = −0.8306 ∈ (−1, 0) in Lemma 2
is reached. Therefore, we know that (12) has at least one posi-
tive root. By calculation, one can find that the unique positive
solution of (12) is ω0 = 0.113. Thus, the critical value defined
in (14) is τ0 = 8.2858. According to Theorem 3, we can see
that the positive equilibrium (M∗, S∗, P∗) of the negative cyclic
genetic network (19) with n = 9 is asymptotically stable when
τ < τ0 = 8.2858 and unstable when τ > τ0. A Hopf bifur-
cation occurs, i.e., a periodic oscillation bifurcates from the
positive equilibrium (M∗, S∗, P∗) when τ crosses through the
critical values as shown in Figs. 9 and 10.

VI. BIOLOGICAL INSIGHTS

In this section, from a biological viewpoint, we reveal the
effects of parameters and structures on the dynamics of genetic
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Fig. 10. Waveform plots of the negative cyclic gene regulatory network (19)
with n = 9, c = 1, μ = 1, e = 0.5, d = 0.6, f = 0.25, h = 2, α = 2, and the
initial condition (M0, S0, P0) = (ζ1, ζ2, . . . , ζ9), where ζj(i = 1, 2, . . . , 9)

are the random numbers between 0 and 1. The periodic oscillations occur,
where τ = 9 × (τm + τp) = 8.46 > τ0 = 8.2858.

regulatory networks with sRNAs. This provides a guideline
for the design of experiments and the construction of gene
oscillators.

A. Existence of Equilibria

The analytic conditions of Theorem 1 indicate that cyclic
genetic regulatory networks including sRNAs tend to have an
odd number of equilibria.

The parameter ν is an original quantity that denotes the
number of repressors, and it plays important roles for not
only the existence of equilibria but also the profiles of bifurca-
tions. In practice, when ν is odd, the cyclic genetic regulatory
network with sRNAs has a unique equilibrium; when ν is
even, the cyclic genetic regulatory network with sRNAs has

TABLE I
VALUES OF ω0 AND τ0 FOR (19) WITH c = 1, μ = 1, e = 0.5, d = 0.6,

f = 0.25, h = 2, α = 2 AND DIFFERENT VALUES OF

n: n = 1, 3, 5, 7, AND 9

an odd number of equilibria and there may be more than one
equilibrium.

The number of genes, n, represents the size of gene
networks, which has an important influence on the number of
equilibria and dynamical behaviors of positive cyclic genetic
networks with sRNAs. The parameter n is associated with the
degree of nonlinearity 	(·). A large n means the high non-
linearity. In particular, a large n implies more equilibria for
positive cyclic genetic networks with sRNAs.

The large Hill coefficient, hi, indicates the high nonlinear-
ity of gi(·). The gene networks with a relatively large Hill
coefficient are more likely to have more equilibria.

B. Fold Bifurcation

The parameter γ is a synthetic quantity proposed in this
paper, which has a significant impact on the stability and fold
bifurcation of positive cyclic gene networks with sRNAs. It
can be concluded from Theorem 2 that the large γ actually
implies a more stable equilibrium.

The positive cyclic genetic network mediated by sRNAs
may have more equilibria as the parameters n and hi get larger.
This means that the positive network consisting of a large
number of genes and bigger Hill coefficients are more likely
to generate fold bifurcations.

C. Hopf Bifurcation

As a result of cyclic structure, the total delay τ plays a key
role rather than the individual delays among each gene. The
large n and τ mean that the cyclic network has a large delay in
the loop. This coincides with the intuition that the closed-loop
network with a large loop delay tends to become unstable.

Table I shows the effect of the number of genes on the
values of ω0 and τ0. It is obvious that the critical value
τ0 decreases clearly with the number n of genes increasing,
implying that the value of τ0 is sensitive to the change of
the number of genes. We can conclude from Table I that the
networks consisting of a large number of genes are difficult to
maintain stable in the presence of a larger total delay, and are
more likely to have a Hopf bifurcation when the total delay τ

varies. This also means that the networks with a large number
of genes tend to have periodic oscillations.

Moreover, Figs. 11 and 12 reflect the effect of τ on the
amplitude and frequency of pi(t) for the negative cyclic gene
regulatory network (19) with n = 9, respectively. To be spe-
cific, the amplitude increases with the delay τ , while the
frequency gets smaller with the delay τ becoming bigger. This
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Fig. 11. Amplitude of pi(t) depending on τ for the negative cyclic gene
regulatory network (19) with n = 9, c = 1, μ = 1, e = 0.5, d = 0.6, f =
0.25, h = 2, and α = 2.

Fig. 12. Frequency of pi(t) depending on τ for the negative cyclic gene
regulatory network (19) with n = 9, c = 1, μ = 1, e = 0.5, d = 0.6, f =
0.25, h = 2, and α = 2.

suggests that one may choose the appropriate value of τ to
obtain the desired oscillation of the Hopf bifurcation.

VII. CONCLUSION

It has been proved by experiments that sRNAs take a sig-
nificant role in gene regulation processes. Thus, it is very
important to introduce sRNAs to regulate gene expressions
in real gene networks. In this paper, sRNAs have been incor-
porated into a new dynamical model for cyclic gene networks,
which is described by high-dimensional delay differential
equations. The existence of equilibria has been verified and the
stability and bifurcations have been investigated by analyzing
the distribution of characteristic roots. It has been demon-
strated that the dynamics of cyclic gene networks mainly
depends on the number of repressors, the multiplication of
functions, and the sum of delays.

For a positive cyclic gene network with an even number of
repressors, more than one equilibrium probably exists, and the
value of γ composed of the Hill coefficient, the biochemical
parameters, and the equilibrium itself decides the stability of

each equilibrium. Moreover, the stability of the equilibrium is
delay-independent. When the positive cyclic gene network has
more than one equilibrium, the multistability may occur.

For a negative cyclic gene network with an odd number
of repressors, there exists a unique equilibrium. Unlike the
delay-independent stability of positive cyclic gene networks,
the stability of the equilibrium is delay-dependent for neg-
ative cyclic gene networks. Therefore, the stability of the
equilibrium is decided not only by the biochemical param-
eters, the Hill coefficient and the equilibrium itself, but also
by multiple delays. The total delay can switch the negative
cyclic gene networks between the stable states and unstable
states and a Hopf bifurcation may occur when the stability of
the equilibrium changes.

Moreover, some biological insights have been derived. With
increasing the number of genes, the critical value of the total
delay decreases clearly. Furthermore, the amplitude of bifur-
cating oscillations grows apparently along the total delay,
while the frequency of oscillations decreases with the increase
of the total delay. These insights can be a useful guid-
ance in constructing synthetic gene circuits and designing
experiments.

It is worth noting that the global stability of the equilib-
rium and stability of periodic oscillations are very important
for gene networks which are not involved in this paper. Thus,
our future work will be devoted to the global stability analy-
sis and the direction and stability of the bifurcating periodic
oscillations for gene networks.
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