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Abstract—In this paper, a new approach for synchronization of
complex dynamical networks is proposed based on state observer
design. Unlike the common diagonally coupling networks, where
full state coupling is typically needed between two nodes, here
it is suggested that only a scalar coupling signal is required to
achieve network synchronization. Some conditions for synchro-
nization, in the form of an inequality, are established based on the
Lyapunov stability theory, which can be transformed to a linear
matrix inequality and easily solved by a numerical toolbox. Two
typical dynamical network configurations, i.e., global coupling
and nearest-neighbor coupling, with each node being a modified
Chua’s circuit, are simulated. It is demonstrated that the proposed
scheme is effective in achieving the expected chaos synchronization
in the complex network.

Index Terms—Complex dynamical network, linear matrix in-
equality (LMI), Lyapunov stability, state observer, synchroniza-
tion.

I. INTRODUCTION

RECENTLY, there has been increasing interest in the study
of complex dynamical networks and their collective

behaviors in synchronization [1]–[11], [16]–[22]. Different
mathematical models have been proposed in order to describe
various complex dynamical networks in the real world, such as
the Erdös–Rényi (E-R) random-graph models [34], small-world
models [5], scale-free models [1], [4], and so on. The E-R model
is one of the oldest and perhaps also the most rigorous mathe-
matical platforms for studying statistical network behaviors, but
it cannot capture some typical dynamical and statistical phe-
nomena in many real-life large-scale complex networks, such
as large clustering with small average distance and power-law
degree distribution. Hence, small-world models, scale-free
models, and their variants as well as evolving network models
have recently been developed to represent various real-world
networks, including the Internet, the World-Wide-Web, power
grids, metabolic networks, social relationship networks, and
so on.
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In the real world, synchronizing a group of dynamical nodes
in a complex network topology, as one of the basic collective
behaviors of a dynamical network, is important and yet quite
challenging [3], [8]–[11], [14], [16]–[22]. Conditions for syn-
chronization are critical for many engineering applications, such
as secure communications [25] and harmonic oscillation gener-
ation, to name just a couple. Similar studies can also be found in
language emergence and development, for which a common set
of vocabularies is to be found, or in organization management,
where the efficiency of agents can be improved via behavioral
synchronization [16]. Various networks have been studied, in-
cluding regular networks [10], [11], [14] and small-world and
scale-free networks [3], [8], [9], [16]–[22], in addition to a large
amount of work on the classic random-graph networks.

Most of the underlying models [16]–[22] assume diagonal
coupling among the nodes in a network, implying that all of the
state variables of a node have to be transmitted to its connected
neighbors. This assumption not only leads to a very dense
network topology or a large capacity of connection channels,
but also is impractical for real engineering network design and
implementation, such as communication networks, in which
having too many links or too wide bandwidths in communica-
tion channels among the users is very unlikely.

This paper addresses the question of whether it is possible
to have synchronization achieved in a network with nodes con-
nected only through one-dimensional links. A positive answer is
given and, based on the state observer approach, a general syn-
chronization scheme for such a network topology is proposed
and studied. The state observer approach has been applied to
chaos synchronization between two chaotic circuits or systems
[26]–[32], where only one scalar driving signal is used. Here, the
technique is extended to a large-scale complex network, where
multiple nodes are to be synchronized. Based on the Lyapunov
stability theory and the linear matrix inequality (LMI) technique
[33], some criteria are established in the form of LMIs, which
can be easily solved by an existing LMI toolbox.

The remainder of this paper is organized as follows. In
Section II, a dynamical network model based on the state
observer approach is proposed. Synchronization of such a
dynamical network and some criteria are then presented in
Section III. In Section IV, two typical dynamical networks,
with global coupling and nearest-neighbor coupling, respec-
tively, where each node is a modified Chua’s circuit [23], [24],
are simulated, illustrating the effectiveness of the theoretical
results and validating the criteria derived in the paper. Finally,
some concluding remarks are provided in Section V.
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II. DYNAMICAL NETWORK MODEL

Consider a dynamical network consisting of linearly and
diffusively coupled identical nodes, with each node being an

-dimensional dynamical system. Based on the state observer
approach, the proposed dynamical network model is described
by

(1)

where is the state variable of
node , , , is the output variable (scalar) of
node (a dynamical system), is the observer
gain matrix to be designed in order to achieve synchronization,
and is the coupling configuration matrix rep-
resenting the coupling strength and the topological structure of
the network, in which is defined as follows. If there is a con-
nection between node and node , then ,
otherwise, , and the diagonal elements of
matrix are defined by

(2)

Assuming that there is no isolate cluster in the network, the cou-
pling configuration matrix will be symmetrical
and irreducible.

From (1) and (2), dynamical network (1) can be rewritten as

(3)

Remark 1: From (1) or (3), one can see that only one scalar
signal is needed for coupling between two directly connected
nodes in the network, while the other network synchronization
methods generally require state variables for coupling be-
tween any two directly connected nodes [16]–[22].

Let

(4)

where is the observer matrix. Thus, is a
linear combination of the state variables of node . Substituting
(4) into (3) gives

(5)

III. NETWORK SYNCHRONIZATION AND ITS CRITERIA

The dynamical network (5) is said to achieve (asymptotical)
synchronization [11] if

(6)

where is the Euclidean norm and satisfies

(7)

Here, can be an equilibrium point, a periodic orbit, or even a
chaotic orbit. It is obvious that the stability of the synchronized
states (6) of network (5) is determined by the dynamics of the
isolate node (7), the coupling matrix , the observer gain matrix

, and the observer matrix .
Assuming and linearizing the network (5)

about , one has

(8)

where is the Jacobian of the function at .
It follows from (8), that (9), which is shown at the bottom of

this page, is true.
Based on the system stability theory, if (9) is asymptotically

stable about zero, the dynamical network (3) or (5) will be
asymptotically synchronized.

In order to derive some criteria for choosing and to en-
sure synchronization in network (5), a special feature of matrix

is firstly needed, given as follows.
Lemma 1 [17], [22]: One eigenvalue of matrix

is zero, with multiplicity 1, and the other eigenvalues
of are strictly negative.

Theorem 1: Consider the dynamical network (5) and assume
that the Jacobian matrix is exponentially stable. If the
following -dimensional linear time-varying systems are
exponentially stable:

(10)

then the dynamical network (5) is exponentially synchronized.
Proof: From (8), one has

...
(11)

...
...

...
...

...
(9)
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and

...
...

...
(12)

Letting gives a matrix equation

(13)

Since is a real symmetrical matrix, there exists a unitary ma-
trix such that

(14)

From (13) and (14), it follows that

(15)

Let and . Then

(16)

and

(17)

According to Lemma 1, one eigenvalue of matrix is
, and the corresponding linear system in (17) is

(18)

which is the corresponding linearized system of any individual
node at . For all , system (17) is system
(10).

Therefore, if the following -dimensional linear time-
varying systems are exponentially stable:

(19)

which is the same as (10), then the network (5) is exponentially
synchronized.

Remark 2: If the individual node is a periodic
system or a chaotic system with a bounded attractor, then one
can also obtain a similar result (Corollary 1) following the above
procedure, according to the definition of chaos synchronization
in a dynamical network, based on the concept of transverse er-
rors [19], [21].

Corollary 1: Consider the dynamical network (5) and assume
that each isolate node is a periodic system or a chaotic system. If
the following -dimensional linear time-varying systems
are exponentially stable:

(20)

then the dynamical network with chaotic nodes is exponentially
synchronized.

Assume that

(21)

where is a constant matrix, and is
a continuous nonlinear function satisfying

(22)

uniformly in , where is a constant.
From (20) and (21), one has

(23)

Theorem 2: Assume that the Jacobian satisfies (21)
and (22) and the pair is observable. If a suitable observer
gain matrix is selected such that

(24)

where is a positive definite and symmetric matrix, is the
identity matrix, and is a positive constant, then the error
dynamical system (23) will be exponentially stable about zero.
Consequently, the dynamical network (5) is exponentially
synchronized.

Proof: Define a Lyapunov function . Differ-
entiating along the error dynamical trajectory (23) and using
(22), one obtains

Since , using (24),
one further has

Based on the Lyapunov stability theory, the error dynamical
system (23) is uniformly stable about zero. Consequently, the
dynamical network (5) is exponentially synchronized.

Lemma 2 (Schur Complements [33]): For a given symmetric

matrix , where , , and

, the condition is equivalent to
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Using Lemma 2, condition (24) can be transformed into the
LMI form of

(25)

where .
If the pair is observable, and suitable matrices and
are selected such that (25) is satisfied, the error dynamical

system (23) with will be uniformly stable about
zero. Consequently, the dynamical network (5) is asymptotically
synchronized.

Remark 3: The Lyapunov inequality (24) is generally diffi-
cult to be solved directly. By transforming (24) into its LMI
form (25) using Schur complements as shown above, a feasible
set of and can be found by using the existing LMI numer-
ical toolbox [26], [33].

IV. ILLUSTRATIVE EXAMPLE

Here, we illustrate the proposed scheme and the criteria of
synchronization with a network example, where each node is a
chaotic modified Chua’s circuit. Although other nonlinear sys-
tems may be applied, this chaotic system is chosen as it is com-
plex but also can be easily conformed to our formulation.

The modified Chua’s circuit is described by [23], [24]

(26)

where is a smooth sine-type function in the form of
if
if
if

(27)

with constants , , , and . The number of
scrolls is determined by and , namely

(28)
if is odd
if is even.

(29)

For example, by setting the parameters , ,
, , , and , we have ,

and the generated three-scroll attractor is depicted in Fig. 1. The
corresponding sine function is shown in Fig. 2.

Referring to (3), a dynamical network with nodes can be
constructed as follows:

(30)

Fig. 1. Chaotic three-scroll attractors on the (x , x ) plane.

Fig. 2. Sine-type function for generating a chaotic three-scroll attractor.

From system (26), we have

and as obtained from Fig. 2 [24].
Two typical coupling configurations, with global coupling

and the nearest-neighbor, respectively, are considered below. It
should be pointed out that it is much easier to achieve synchro-
nization for the cases where the nodes are (stable) equilibrium
points or (orbitally stable) periodic orbits, so they are omitted.
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A. Global Coupling

First, we consider the situation of global coupling where any
two nodes in the network are connected directly. The corre-
sponding coupling configuration matrix is

...
...

. . .
...

(31)

Matrix has a single eigenvalue at 0, i.e., , while
for . By choosing and

, is observable.
For simplicity, a four-node network is considered.

By solving the inequality (25) with the MATLAB LMI toolbox,
can be easily obtained. Fig. 3

shows the behavior of the first state variable of node 1 and chaos
synchronization in the four-node network (30) under the global
coupling configuration (31).

It can be noticed that, if , meaning that the network
is large enough, then , . In this case,
synchronization in the network (30) can be easily achieved with
a very small observer gain matrix according to (25), implying
that synchronization is very easy to be achieved. This phenom-
enon was also observed in many diagonally coupling networks
[16]–[18].

B. Nearest-Neighbor Coupling

The nearest-neighbor coupling configuration consists of
nodes arranged in a ring and coupled to the nearest neighbors.
In this case, the coupling configuration matrix is

. . .
. . .

. . . (32)

The eigenvalues of are

(33)

For simplicity, we also consider a four-node network as an
example. Assuming that and , one can
obtain such that (25) is
satisfied, and the behaviors of chaos synchronization in the four-
node network (30) under nearest-neighbor coupling are depicted
in Fig. 4.

It is noted that, if , implying a sufficient large net-
work, the second large eigenvalue in (33)
will tend to zero. In this case, a sufficiently large is needed, as
shown in (25), to ensure synchronization in network (30). There-
fore, synchronization in network (30) is not easily attained if it
consists of a large number of nodes. The same phenomenon was
also observed in various diagonally coupled networks [16]–[18].
The synchronizability of such a network (with a very large

Fig. 3. Synchronization of the four-node network (30) under the global cou-
pling configuration. (a) The behavior of the first state variable of the first node.
(b) Synchronization of the first state variables between nodes 1 and 2. (c) Syn-
chronization of the first state variables between nodes 1 and 3. (d) Synchroniza-
tion of the first state variables between nodes 1 and 4.

Fig. 4. Synchronization of the four-node network (30) under the nearest-
neighbor coupling configuration. (a) The behavior of the first state variable of
the first node. (b) Synchronization of the first state variables between nodes 1
and 2. (c) Synchronization of the first state variables between nodes 1 and 3.
(d) Synchronization of the first state variables between nodes 1 and 4.

number of nodes) can be improved if additional connections to
some far-located nodes are established, leading to a small-world
network model [16], [18].

Remark 4: The proposed scheme may be applied to the other
types of dynamical networks, such as small-world and scale-free
ones. For example, with a small-world network, the eigenvalues

of the coupling configuration matrix can be obtained via
the numerical simulation [18], and the observer gain is ob-
tained by solving the LMI (25).

V. CONCLUSION

A new scheme has been proposed for synchronization in com-
plex dynamical networks based on the approach of state ob-
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server design. The proposed scheme is better than the existing
ones for diagonally coupling networks in the sense that it only
requires a scalar signal for coupling between any pair of directly
connected nodes, which is more practical and convenient to use
in real engineering applications. By using the Lyapunov sta-
bility theory, some sufficient conditions have been established
to ensure synchronization in the networks. The criteria are fur-
ther transformed to the LMI form, so that suitable observer
gains can be easily obtained by using the available LMI toolbox.
Two typical dynamical network configurations have been sim-
ulated, with global coupling and nearest-neighbor coupling, re-
spectively, where each node is a modified Chua’s circuit, which
illustrates the effectiveness of the proposed scheme and vali-
dates the criteria derived in the paper. This state-observer-based
approach can be further generalized and applied to other types
of coupling configurations of various complex dynamical net-
works, which will be carried out in our future research.
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